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Timed Actors for Modeling and Analysis

I will talk about 
Modeling 
Analysis and Verification
Applications

– Actors and Timed Rebeca
– Model Checking of Timed Rebeca and Reduction 

Techniques, different semantics for Timed Rebeca
– Different Projects
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Main messages of the talk

• The actor-based language, Rebeca, provides a 
friendly and analyzable model for distributed, 
concurrent, event-driven software systems 
and cyber-physical systems.

• Floating Time Transition System is a natural 
event-based semantics for timed actors, giving 
us a significant amount of reduction in the 
state space, using a non-trivial idea.
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In this example, the 
modeling universe is 
calculus and Newton’s 
laws.
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The modelThe target: 
the thing 
being 
modeled

A model is any description of a system 
that is not the thing-in-itself.

Yet another model?
Models vs. Reality



Another Model
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Image by Dominique Toussaint, GNU Free Documentation License, Version 1.2 or later.

Faithfulness is 
how well the 
model and its 
target match



A Physical Realization
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• In science, the value of a model lies in how well its 
behavior matches that of the physical system.

• In engineering, the value of the physical system lies 
in how well its behavior matches that of the model.

A scientist asks, “Can I make a model for this thing?” 
An engineer asks, “Can I make a thing for this model?”
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The Value of Models



Useful Models and Useful Things

“Essentially, all models are wrong, 
but some are useful.”

Box, G. E. P. and N. R. Draper, 1987: Empirical Model-Building and Response 
Surfaces. Wiley Series in Probability and Statistics, Wiley. 

“Essentially, all system implementations 
are wrong, but some are useful.”

Lee and Sirjani, “What good are models,” FACS 2018.
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To a scientist, the model is flawed.
To an engineer, the realization is flawed.



Models and Models and Things
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Models

ThingsScience Engineering

Models

Abstraction Refinement

SynthesisAnalysis



Faithfulness

• Faithfulness of the modeling language is 
important

• Properties of the modeling language 
should reflect properties of the problem 
domain
– A modeling language with encapsulation, 

discrete events, concurrency, and 
asynchronous interactions will make it easier 
to model distributed software systems.
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Power is Overrated, 
Go for Friendliness! 

• Expressiveness versus Faithfulness and Usability in 
Modeling 
– Based on my experience with actors

• What is the Expressive Power of a language?

– Generally defined as the breadth of ideas that can 
be represented and communicated in a language

– Usually checked by mutually encoding the 
formalisms into each other 

Power is Overrated, Go for Friendliness! Expressiveness, Faithfulness and Usability in 
Modeling - The Actor Experience, Edward Lee Festschrift, 2017



Modeling 
with my engineering hat on

The Language, the Thing, the Modeler

• Expressiveness of the modeling language

• Faithfulness of the “modeling language” or 
“the model” to the thing

• Usability of the modeling language for the 
modeler
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• Friendly to the system we want to build: 
Faithfulness

• Friendly to the user who builds the 
system: Usability

• The Map you use has to show the roads 
correctly, and also be easily readable.

Compare Google map and Apple map
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Faithfulness

• Less semantic gap between the real world and the 
model

• The structures and features supported by the 
modeling language match the constructs of 
interest in the system being modeled

• Faithfulness: Leads to Domain-specific Modeling 
Languages

• Faithfulness is also defined as: The degree of detail incorporated in the 
model (but this is not my definition)
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Model of Computation and 
Faithfulness

• MoC: a collection of rules
– govern the execution of the [concurrent] components 

and 

– the communication between components

• We say a modeling language is faithful to a system 
if the model of computation supported by the 
language matches the model of computation of 
[the features of interest of] the system. 
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CCS

SMV

Java
   C

Modeling languages

RML
Timed Automata

CSP

Promela

FDR

NuSMV

Spin

Java PathFinder

Bandera

SLAM

Abstract

Mathematical

Too heavy
Not 
always 
formal

Verification Techniques: 
• Deduction

• Model checking 

Programming languages

Petri net

needs high expertise

causes state explosion

Different approaches for Modeling and Verification
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Our choice for modeling: Actors

– A reference model for concurrent computation
– Consisting of concurrent, distributed active 

objects

• Proposed by Hewitt as an agent-based language (MIT, 
1971) 

• Developed by Agha as a concurrent object-based language 
(Illinois, since 1984)

• Formalized by Talcott (with Agha, Mason and Smith): 
Towards a Theory of Actor Computation (CONCUR 1992)



Rebeca: The Modeling Language
Asynchronous and Event-driven
▪ Rebeca: Reactive object language (Sirjani, Movaghar, Peresented at AVoCS 2001)

▪ Based on Hewitt actors

▪ Concurrent reactive objects (OO)
▪ Java like syntax

▪ Communication:
▪ Asynchronous message passing: non-blocking send
▪ Unbounded message queue for each rebec
▪ No explicit receive

▪ Computation:
▪ Take a message from top of the queue and execute it
▪ Event-driven
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Rebeca - Behavior

An actor: 

• A message queue

• Message servers

• State Variable 19

Actor-1 Actor-2

A B
C

X,Y,ZM,N

A

B
A B

X,Y,ZAB

C

M,N

queue queue



Rebeca - Structure

A Rebeca model consists of:
-reactive classes and their behavior definition
-instantiations of rebecs (reactive objects) to run 
in parallel

A reactive class is made of three parts:
1.  known rebecs (other rebecs to whom 

messages can be sent),
2.  state variables (like attributes in 

object-oriented languages),
3.  message server (defining the behavior of the 

actor like methods).
20
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Project editor

Festschrift Papers:
• Ten years of Analyzing Actors: Rebeca Experience (Sirjani, Jaghouri), Carolyn Talcott 

Festschrift, 70th birthday, LNCS 7000, 2011

• On Time Actors (Sirjani, Khamespanah), Theory and Practice of Formal Methods, Frank de Boer 
Festschrift, 2016

• Power is Overrated, Go for Friendliness! Expressiveness, Faithfulness and 
Usability in Modeling - The Actor Experience, Edward Lee Festschrift, 2017

Model and 
Property 

editor

Model checking 
result view

http://www.rebeca-lang.org/

http://www.rebeca-lang.org/
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Timed Rebeca

• An extension of Rebeca for real time systems 
modeling
– Computation time (delay)

– Message delivery time (after)

– Periods of occurence of events (after)

– Message expiration (deadline)



Timed Rebeca with an example: Network on 
Chip

24

Exploring Design Decisions: 
• Evaluating routing algorithms 
• Buffer length
• Choose the best place for the memory



Globally Asynchronous- 
Locally Synchronous NoC

25

XY routing algorithms

⚫ GALS NoC
      ASPIN: Two-dimensional mesh GALS NoC

Communication Protocol

NoC is a communication paradigm on 
a chip, typically between cores in 
a system on a chip (SoC).
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neighbor.giveAck 

sender.getAck 

▪Four phase handshake communication protocol: the 

channel is blocked until the packet arrives to the other 

router.

▪The sender put the packet in the output buffer along with 

the request signal to the receiver and doesn’t send the next 

packet before receiving the Ack.



reactiveclass Router{
     knownrebecs 
         {Router[4] neighbor, Core myCore} 
     statevars{int[4] buffer;}
     Router (myId-row, myId-col) { …
      }
     msgsrv reqSend()  {
          neighbor[x]. giveAck() after(3);   . . .   
      }
    msgsrv getAck()  {
        // receive ack from the receiver
        // get ready for receiving the next
             packet …
      }
    msgsrv giveAck (…) {
      //if the message is for my core use it
      myCore.forMyCore()
      //send ack to the sender
      sender.getAck() after(3);  
     // if not route it to the receiver …
  }  }

ASPIN: Rebeca abstract model

Actor type 
and its 

message 
servers

Asynchronous 
message 
sending

Constructor 

A 
message 

server

reactiveclass Core{

     knownrebecs {Router myRouter} 

     statevars{ …}

     Core ( … ) {

             ….

     }

     msgsrv forMyCore()  {

         // get the Packet and use it

             . . .   

      }

main(){
     Router r00(r02,r10,r01,r20)(0,0);

     Router r01(r00,r11,r02,r21)(0,1);

       …
     Core c00(r00)

     Core c01(r01)

       …
   }

Instances of 
different actors

Known rebecs
Parameters
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reqSend:
//Route the Packet
neighbor.giveAck;

giveAck:
//if I am the final Receiver
//then Consume the Packet
sender.getAck;
myCore.forMyCore;

//else if my buffer is not 
full
//get the Packet  
sender.getAck
//and route it ahead 
self.reqSend;

else (my buffer is full) wait

getAck:
//send the Packet
//set the flag of your port to free

1: reqSend 2: neighbor.giveAck 

3: sender.getAck 

4:
forM

yCore

5:
 re

qS
en

d



reactiveclass Router{
     knownrebecs {Router[4] neighbor} 
     statevars{int[4] buffer;}
         Router ( … ) {
             ….
         }
         msgsrv reqSend()  {
             delay(2);
             neighbor[x]. giveAck() after(3) deadline(6);
             . . .   
      }

msgsrv giveAck (…) {
      //if the message is for my core use it
      myCore.forMyCore()
      //send ack to the sender
      sender.getAck() after(3);  
     // if not and buffer not full then route it to the receiver …
     // if buffer full then busy-wait until buffer empty
     else self.giveAck() after(10),
 }  
       …
}

ASPIN: Rebeca abstract model
29

Time progress 
because of 

computation delay

Communication 
delay

Deadline for the 
receiver

periodic tasks



Evaluation of different memory 
locations for ASPIN 8×8 
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⚫ Consider 5 cores and their access time to the memory

⚫ 3 choices for memory placement

⚫ 40 packets are injected

⚫ High congestion in area 1 and 2

⚫ Unlike our expectation 
M1 is a better choice 
than M2

⚫ The packet injection is 
based on an application 
(note that cores have 
different roles)



Modeling NoC in TRebeca
31

ASPIN Component

Router + Core

Buffer

Routing algorithm

Scheduling algorithm

Packet

Channel

Communication 
protocol

Model in Rebeca

Rebec

Rebec queue (write/read delays by 
after )

Message servers (delay by after)

Schedular of the rebec queue (delay 
by after)

Destination address & ID

Message passing

Message servers

Keep the constructs and features that affect the properties of interest and check the 
following:

1. Possible Deadlock
2. Successful sending and receiving of packets
3. Estimating the maximum end-to-end packet latency

Model checking: 3 seconds

HSPICE: 24 hours

Much less details.

Showed the same trend.



Go Through Different models at 
Different Levels
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Efficient Model Checking of Timed Actors: 
Focus on Events

State Space

33

Model

To do Analysis

⚫ Timed Automata
⚫ Timed Transition System
⚫ Floating Time Transition 

System



Standard Semantics: 
Timed Transition System

• In TTS transitions are of three types:
– Passage of time

– Taking a message from the queue to execute: event

– Silent transition τ: internal actions in an actor

34



Semantics of a simple Timed-Rebeca Model:

Timed Transition System
reactiveclass RC1 (3) {

knownrebecs {

RC2 r2;

}

RC1() {

self.m1();

}

msgsrv m1() {

delay(2);

r2.m2();

delay(2);

 r2.m3();

self.m1() after (10);

}

}

reactiveclass RC2 (4) {
knownrebecs {
RC1 r1;

}
RC2() { }
msgsrv m2() { }

msgsrv m3() { }
}

main {
RC1 r1(r2):();
RC2 r2(r1):();

}

msgsrv m1() {
1 delay(2);
2 r2.m2();
3 delay(2);
4 r2.m3();
5 self.m1() after (10);

}

Line number as 
program counter



Timed-Transition System of the 
simple model 

• Eight different 
states are 
generated for one 
round of execution

• Unbounded 
transition system

msgsrv m1() {
 1 delay(2);
 2 r2.m2();
 3 delay(2);
 4 r2.m3();
 5 self.m1() after (10);

}



Properties in an event-based system

• Properties that we care about the most:
– Distance of occurrence of two events
– Event precedence

• Remember, in TTS the transitions are of three 
types:
– Passage of time
– Taking a message from the queue to execute: event
– Silent transition τ: internal actions in an actor

37



   Real-time Patterns
(Koymans, 1990), (Abid et al., 2011), (Bellini et al., 2009) and (Konrad et al., 2005), (Dwyer et al., 
1999)

• Maximal distance
–  Every e1 is followed by an e2 within x time units

• Exact distance
–  Every e1 is followed by an e2 in exactly x time units

• Minimal distance
– Two consecutive events of e are at least x time units apart

• Periodicity
– Event e occurs regularly with a period of x time units

• Bounded response
– Each occurrence of an event e is responded within a 

maximum number of time units
• Precedence

– Within the next x time units, the occurrence of e1 
precedes the occurrence of e2

38

⚫ Properties that we care about the most:
◦Distance of occurrence of two events

◦ Event precedence



So, we proposed

• An event-based semantics for Timed Rebeca:

• Floating Time Transition System
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Floating Time Transition System: 
Event-based Timed-Rebeca Semantics

• Formal semantics given as SOS rules

• The main rule is the schedular rule:

40



The scheduler and progress of time

• The scheduler picks up messages from the bag based on their time tags 
and execute the corresponding methods.

• delay statements change the value of the current local time, now, for 
the considered rebec.

• The time tag for the message is the current local time (now), plus value 
of the after

• The scheduler picks the message with the smallest time tag of all the 
messages (for all the rebecs) in the message bag.

• The schedular checks if a deadline is missed.

• The variable now is set to the maximum between the current time of 
the rebec and the time tag of the selected message.
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State space reduction: 
a simple Timed-Rebeca Model

reactiveclass RC1 (3) {

knownrebecs {

RC2 r2;

}

RC1() {

self.m1();

}

msgsrv m1() {

delay(2);

r2.m2();

delay(2);

 r2.m3();

self.m1() after (10);

}

}

reactiveclass RC2 (4) {
knownrebecs {
RC1 r1;

}
RC2() { }
msgsrv m2() { }

msgsrv m3() { }
}

main {
RC1 r1(r2):();
RC2 r2(r1):();

}

msgsrv m1() {
1 delay(2);
2 r2.m2();
3 delay(2);
4  r2.m3();
5 self.m1() after (10);

}

Line number as 
program counter



FTTS of the simple model

• Four states are generated for 
one round of execution

• PCs are omitted

• Unbounded state space is 
generated

43
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TTS       versus      FTTS



Bounded Floating-Time Transition 
System

• A notion of state equivalence by shifting the 
local times of rebecs

• Time in Timed-Rebeca models is relative
– Uniform shift of time to past or future has no 

effect on the execution of statements

45



Bounding the Floating-Time Transition 
System

46

Ticket Issued

Ticket Issued, 33



Bounded Floating-Time Transition 
System: an example

• A shift-time transition, 
between states 16 and 
20

• Bounded floating-time 
transition system and 
floating-time 
transition system are 
bisimilar.
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Bounded FTTS of the simple model

• Bounded transition 
system is generated

• Contents of the 
states are the same 
as FTTS

48



Deadlock and schedulability check

• We keep the relative distance between values 
of all the timing values of each state (relative 
timing distances are preserved)

• Deadlines are set relatively so time shift has 
no effect on deadline-miss

• For checking “deadline missed” and 
“deadlock-freedom” relative time is enough

49



TTS vs FTTS State Space Size

50

• About 50% state space reduction

Model Name Number of Rebecs FTTS State Space 
Size

TTS State 
Space Size

Ticket Service 
System

3 6 12

4 43 86

5 282 532

6 2035 3526

7 17849 31500

CSMA/CD 4 54 108



Experimental results

• Three models, three tools
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Our reduction technique: distilled

• Event-based analysis - maximum progress of 
time based on events (not timer ticks)
– Generating no new states because of delays, each 

rebec has its own local time  in each state

• Making use of isolated message server 
execution of actors
– no shared variables, no blocking send or receive, 

single-threaded actors, non-preemptive execution of 
each message server

• Check the state equivalence by shifting the local 
times of concurrent elements in case of 
recurrent behaviors
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Comparing to others

• Real-time Maude
– It ticks … so, explosion

– Bounded model checking

• Timed Automata
– Produce many automata and many clocks for an 

asynchronous system – so, explosion
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A Point:
FTTS, Considering only the time-tags 

reactiveclass Actor1(3) {
Actor1() {

self.job1();
}
msgsrv job1() {

self.job2() after(1);
delay(5);

}
msgsrv job2() {
}
msgsrv job3() {

self.job3() after(1);
}

}

54

reactiveclass Actor2(3) {
knownrebecs {

Actor1 a1;
}
Actor2() {

self.job4() after(2);
}
msgsrv job4() {

a1.job3() after(2);
}

}

main { 
Actor1 actor1():();
Actor2 actor2(actor1):();

}
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Simple FTTS: Consider only Smallest Time Tag 
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actor1 <now>0
<queue> arrival="0" deadline="infinity" sender="actor1">job1
actor2 <now>0
<queue>arrival="2" deadline="infinity" sender="actor2">job4

actor1 <now>5
<queue> arrival="1" deadline="infinity" sender="actor1">job2
actor2 <now>2
<queue> arrival="2" deadline="infinity" sender="actor2">job4

actor1 <now>5
<queue> arrival="1" deadline="infinity" sender="actor1">job2

    arrival="4" deadline="infinity" sender="actor2">job3  
actor2 <now>5
<queue>

actor1 <now>5
<queue> arrival="4" deadline="infinity" sender="actor2">job3 
actor2 <now>5
<queue>

actor1 <now>6
<queue> arrival="6" deadline="infinity" sender="actor1">job3 
actor2 <now>6
<queue>
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Network on Chip
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Design Decisions: 
routing algorithms 
Buffer length
Memory Allocation

Siamak Mohammadi, Zeinab Sharifi, UT

Zeinab Sharifi, Mahdi Mosaffa, Siamak Mohammadi, and Marjan Sirjani: Functional and 
Performance Analysis of Network-on-Chips Using Actor-based Modeling and Formal 
Verification, AVoCS, 2013.
 https://rebeca-lang.org/assets/papers/2013/Performance-Analysis-of-NoC.pdf 

Network Protocols

Deadlock and loop-freedom of 
Mobile Adhoc Networks

Behnaz Yousefi, Fatemeh Ghassemi, and Ramtin Khosravi: Modeling and Efficient 
Verification of Wireless Ad hoc Networks, volume 29, Issue 6, pp 1051–1086, Formal 
Aspects of Computing, 2017.
https://link.springer.com/article/10.1007/s00165-017-0429-z

Fatemeh Ghassemi, Ramtin Khosravi, UT

Design Decisions Bug Check

https://rebeca-lang.org/assets/papers/2013/Performance-Analysis-of-NoC.pdf
https://link.springer.com/article/10.1007/s00165-017-0429-z


Smart Structures
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Schedulability Analysis of 
Distributed Real-Time Sensor 
Network: Finding the best 
configuration 

Gul Agha, OSI, UIUC and Ehsan Khamespanah, UT

Ehsan Khamespanah, Kirill Mechitov, Marjan Sirjani, Gul Agha: Modeling and Analyzing 
Real-Time Wireless Sensor and Actuator Networks Using Actors and Model Checking, 
Software Tools for Technology Transfer, 2017.
https://rebeca-lang.org/assets/papers/2017/Modeling-and-Analyzing-Real-Time-Wireless-Sensor-an
d-Actuator-Networks-Using-Actors-and-Model-Checking.pdf 

Not only Safety and Robustness 

but also Performance, Cost and 

User Satisfaction

Smart Transport Hubs 

Minimize:

Number of service disruptions

Number of mobility resources in smart 
hubs  

Cost of mobility for commuters

Travel time for commuters 

Travel distance for commuters 

Andrea Polini, Francesco De Angelis, Unicam Smart Mobility Lab. 

Jacopo de Berardinis, Giorgio Forcina, Ali Jafari, Marjan Sirjani:
Actor-based macroscopic modeling and simulation for smart urban planning. Sci. Comput. Program. 
168: 142-164 (2018)
https://www.sciencedirect.com/science/article/pii/S0167642318303459?via%3Dihub 

Performance Optimization Resource Management

https://rebeca-lang.org/assets/papers/2017/Modeling-and-Analyzing-Real-Time-Wireless-Sensor-and-Actuator-Networks-Using-Actors-and-Model-Checking.pdf
https://rebeca-lang.org/assets/papers/2017/Modeling-and-Analyzing-Real-Time-Wireless-Sensor-and-Actuator-Networks-Using-Actors-and-Model-Checking.pdf
https://www.sciencedirect.com/science/article/pii/S0167642318303459?via%3Dihub


Air Traffic Control
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Adaptive Air Traffic Control: 
Safe rerouting of airplanes using 
Magnifier 

Volvo CE Quarry Site

Safe and optimized fleet control

Volvo-CE, Stephan Baumgart and Torbjörn MartinssonUC Berkeley, Edward Lee and Sharif, Ali Movaghar

Maryam Bagheri, Marjan Sirjani, Ehsan Khamespanah, Christel Baier, Ali Movaghar, 
Magnifier: A Compositional Analysis Approach for Autonomous Traffic Control, 
IEEE Transactions on Software Engineering, 2021
https://rebeca-lang.org/assets/papers/2021/Magnifier-A-Compositional-Analysis-Approac
h-for-Autonomous-Traffic-Control.pdf 

Marjan Sirjani, Giorgio Forcina, Ali Jafari, Stephan Baumgart, Ehsan Khamespanah, Ali 
Sedaghatbaf: An Actor-based Design Platform for System of Systems, IEEE 43th Annual 
Computers, Software, and Applications Conference (COMPSAC), 2019
https://rebeca-lang.org/assets/papers/2019/An-Actor-based-Design-Platform-for-System-of-Sy
stems.pdf 

Adaptive Flow ManagementAdaptive Flow Management

https://rebeca-lang.org/assets/papers/2021/Magnifier-A-Compositional-Analysis-Approach-for-Autonomous-Traffic-Control.pdf
https://rebeca-lang.org/assets/papers/2021/Magnifier-A-Compositional-Analysis-Approach-for-Autonomous-Traffic-Control.pdf
https://rebeca-lang.org/assets/papers/2019/An-Actor-based-Design-Platform-for-System-of-Systems.pdf
https://rebeca-lang.org/assets/papers/2019/An-Actor-based-Design-Platform-for-System-of-Systems.pdf
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Connected Medical Systems 

Local properties of devices are assured by 
the vendors at the development time.

Verify the satisfaction of timing 
communication requirements.

Helpful for dynamic network configuration 
or capacity planning.

John Hatcliff, U. of Kansas, and Fatemeh Ghassemi, UT

Mahsa Zarneshan, Fatemeh Ghassemi, Ehsan Khamespanah, Marjan Sirjani, John Hatcliff: 
Specification and Verification of Timing Properties in Interoperable Medical Systems. Log. Methods 
Comput. Sci. 18(2) (2022)
https://lmcs.episciences.org/9639 

Time Analysis

Model-Based Cyber-Security

• Runtime monitor to check the 
system behavior using a Tiny 
Digital Twin

SRI, Carolyn Talcott

Fereidoun Moradi, Maryam Bagheri, Hanieh Rahmati, Hamed Yazdi, Sara Abbaspour 
Asadollah, Marjan Sirjani, Monitoring Cyber-Physical Systems using a Tiny Twin to 
Prevent Cyber-Attacks, 28th International Symposium on Model Checking of 
Software (SPIN), 2022
https://rebeca-lang.org/assets/papers/2022/Monitoring-Cyber-Physical-Systems-Using-a-Tin
y-Twin-to-Prevent-Cyber-Attacks.pdf 

Anomaly Detection

https://lmcs.episciences.org/9639
https://rebeca-lang.org/assets/papers/2022/Monitoring-Cyber-Physical-Systems-Using-a-Tiny-Twin-to-Prevent-Cyber-Attacks.pdf
https://rebeca-lang.org/assets/papers/2022/Monitoring-Cyber-Physical-Systems-Using-a-Tiny-Twin-to-Prevent-Cyber-Attacks.pdf


AdaptiveFlow
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VCE Simulator 
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Cyber-Security Assurance
Using Model Checking and Monitoring

Find the attacks like finding the anomalies

Use a 
Tiny Digital Twin
as a reference model



Monitoring at Runtime
Temperature Control System (TPS)
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Window

Room

Controller

open/
close

Commands:
Activate Heating/Cooling
Switch off

Sensor Data:
Temperature value

ATTACKs:
Dropping packets
False sensor data injection
Faulty control commands

DAMAGEs:
Degrades the temperature 
regulation process,
Pushes temperature value out of 
the defined range

The wireless communication network is 
vulnerable to malicious cyber-attacks!!

HC_Unit
CMDs

Sensor 
data

Sensor



Verification-Driven Iterative 
Development of Cyber-Physical System

65Verification-Driven Iterative Development of Cyber-Physical System

Marjan Sirjani, Luciana Provenzano, Sara 
Abbaspour Asadollah, Mahshid Helali 
Moghadam, Mehrdad Saadatmand: 
Towards a Verification-Driven Iterative 
Development of Software for 
Safety-Critical Cyber-Physical Systems, 
Journal of Internet Services and 
Applications, 2021
https://rebeca-lang.org/assets/papers/202
0/Towards-a-Verification-Driven-Iterative-
Development-of-Cyber-Physical-System.pdf 

More models:
We need more models at each phase 

https://rebeca-lang.org/assets/papers/2020/Towards-a-Verification-Driven-Iterative-Development-of-Cyber-Physical-System.pdf
https://rebeca-lang.org/assets/papers/2020/Towards-a-Verification-Driven-Iterative-Development-of-Cyber-Physical-System.pdf
https://rebeca-lang.org/assets/papers/2020/Towards-a-Verification-Driven-Iterative-Development-of-Cyber-Physical-System.pdf


Verification of Cyber-Physical Systems
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(UC Berkeley, Edward Lee)

A polyglot meta-language for 
deterministic, concurrent, 
time-sensitive systems.

Lingua Franca is a programming language based on the Reactor 
model of computation for building cyber-physical systems. 

Reactors and Rebeca: Natural mapping of semantics 
(similar syntax)

Verification of cyberphysical systems 
M Sirjani, EA Lee, E Khamespanah
Mathematics 8 (7), 1068, 2020

Marten Lohstroh , Martin Schoeberl, Andrés Goens, Armin 
Wasicek, Christopher D. Gill, Marjan Sirjani, Edward A. Lee:
Actors Revisited for Time-Critical Systems. DAC 2019: 152
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Experience Distilled as Transparent Actors
● Looking into different application domains

○ Scheduling and end-to-end delays of Sensor Networks and Cyber-Physical Systems 

■ Volvo cars, Volvo Trucks, Deif – Smart Structures (Gul Agha), Interoperable Medical Systems 
(John Hatcliff)

○ Optimisation of Flow Management

■ Volvo CE, Isavia, NoC (Siamak Mohammadi, Smart Hubs (Andrea Polini)

○ Model Checking Network Protocols, CPS

■ AODV, LF, all the above

● Different Actor-based Languages

○ Rebeca, Timed Rebeca, Hewitt-Agha actor-based languages

○ Creol, ABS, Concurrent object languages

○ Lingua Franca and Edward Lee’s actors
68



Transparent Actors
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Transparent Actors
                                               Experience Distilled

(Fatemeh Ghassemi, Ehsan Khamespanah, Hossein Hojjat, 2023) 

Variability Points

Network Delay, 
Priority …

FIFO, EDF, 
pattern-match …

Overwrite, drop…

Composition Level
Which actor to schedule: 

NonDet, Priority

Fatemeh Ghassemi, Marjan Sirjani, Ehsan Khamespanah, Mahrokh Mirani, Hossein Hojjat: Transparent Actor Model. FormaliSE 2023: 97-107
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70

http://rebeca-lang.org/publications
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• QUESTIONS?
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• End of Slides
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Corollary 1. Transition systems of Timed Rebeca models in TTS and FTTS are 
equivalent with respect to all formulas that can be expressed in modal µcalculus 
with weak modalities where the actions are taking messages from bags.



Timed Rebeca Model of Ping-Pong

reactiveclass Ping(3) {

knownrebecs {Pong pong;}

Ping() {

self.ping();

}

msgsrv ping() {

pong.pong() after(1);

delay(2);

}

}

reactiveclass Pong(3) {

knownrebecs {Ping ping;}

Pong() {

}

msgsrv pong() {

ping.ping() after (1) deadline(2);

delay(1);

}

}

main {

Ping ping(pong):();

Pong pong(ping):();

}



Timed Transition System of Ping-Pong

τ:Ping.ping

Ping.ping

time +=1

Pong.pong

time +=1

τ:Pong.pongτ:Ping.ping

τ:Pong.pongPing.ping

τ:Pong.pong Ping.ping

Ping.ping

Ping.ping

Pong.pong

time+=1

τ:Pong.pong

τ:Ping.ping

time+=1

Without after and deadline

Start executing a 
method

delay

continue executing 
a method

With after and deadline



Timed Automata of Timed Rebeca 
Models

• Three types of automata 
– A timed automaton for modeling the behavior of 

each rebec

– A timed automaton for each message bag

– A timed automaton for simulating the behavior of 
after



Timed Automata for Ping and Pong
(Model without after and deadline)

reactiveclass Ping(3) {

knownrebecs {Pong pong;}

Ping() {self.ping();}

msgsrv ping() {

pong.pong();

delay(2);

}

}

reactiveclass Pong(3) {

knownrebecs {Ping ping;}

Ping() {}

msgsrv ping() {

ping.ping();

delay(1);

}

}

receive? message == ping

clo
ck1=0

clo
ck

1<=2

clock1==2

sender=ping
receiver=pong
send!

remove-executed-message

s1 s2 s3 s4

s5s6

receive? message == pong

clo
ck2=0

clo
ck

2<=1

clock2==1

sender=pong
receiver=ping
send!

remove-executed-message

p1 p2 p3 p4

p5p6



Timed Automata for Message Buffers

messageBag[0] != NULL

receive!

send?
insertInBuffer()

i:int[1,N]
messageBag[i] != NULL && 
deadline[i] < clock[i]

discard(i)

Synchronized 
with receive? in 

the rebec

Receiving 
messages

Discard messages 
which missed 

their deadlines

q1



Timed Automata for After

after?
insertInBuffer()

messageBag[i] != NULL && 
time[i] == clock[i]

takeFromBuffer()
send!

Send the messages 
when time enough is 
passed according to 
the after parameter

Receive messages 
and put them in a 

buffer

r1



Region Transition System of Timed 
Automata Model

• Labels of states 
– s: Ping actor, 

– p: Pong actor, 

– q: Ping queue, 

– t: Pong queue

– c1: local clock of Ping actor, 

– c2: local clock of Pong actor



Region Transition System of Timed Automata 
Model (without after and deadline)

• A simple trace of the region transition 
system

receive! send?

discard(i)

q1

receive! send?

discard(i)

t1

receive? message
== pong

c2=0
c2<=1

c2==1

se
n

d
er

=P
o

n
g

re
ce

iv
er

=P
in

g
se

n
d

!

R
em

o
ve

ex
ec

u
te

d
m

es
sa

ge

p1 p2 p3

p4p5p6

receive? message
== ping

c1=0
c1<=2

c1==2
se

n
d

er
=P

in
g

re
ce

iv
er

=P
o

n
g

se
n

d
!

R
em

o
ve

ex
ec

u
te

d
m

es
sa

ge
s1 s2 s3

s4s5s6

s1, q1, p1, 
t1

c1=0, c2=0

s2, q1, p1, 
t1

c1=0, c2=0

s3, q1, p1, 
t1

c1=0, c2=0

s4, q1, p1, 
t1

c1=0, c2=0

s4, q1, p2, 
t1

c1=0, c2=0

receive message
==ping

send

c1
=0

s5, q1, p1, 
t1

c1=0, c2=0

re
ce

iv
e

s5, q1, p2, 
t1

c1=0, c2=0

s4, q1, p3, 
t1

c1=0, c2=0

s5, q1, p3, 
t1

c1=0, c2=0

s4, q1, p4, 
t1

c1=0, c2=0
message
== pong

send

message
== pong receive

c1=0c1=0

s4, q1, p5, 
t1

c1=0, c2=0

c1=0

send

c2=0



Region Transition System of Timed Automata 
Model (Model without after and deadline)

Ping.ping

Ping.ping

Pong.pong

time +=1

τ:Pong.pong

τ:Ping.ping

time +=1

RTS of the Timed
Automata model

TTS of the Timed
Rebeca model

message==pong

message==pong

c2=0

receive

message==ping

send

c1=0

c1=0

send c1=0

sendc1=0

0<c1<1, 0<c2<1

c1=1, c2=1

c1=0

receive

receive

c2=0

Ping.ping

Ping.ping

Pong.pong

FTTS of the Timed
Rebeca model



Timed Automata for Ping-Pong
(Model with after and deadline)

reactiveclass Ping(3) {

knownrebecs {Pong pong;}

Ping() {self.ping();}

msgsrv ping() {

    pong.pong() after(1);

    delay(2);

}

}

reactiveclass Pong(3) {

knownrebecs {Ping ping;}

Ping() {}

msgsrv ping() {

      ping.ping() after (1) deadline(2);

    delay(1);

}

}

receive? message == ping

clo
ck1=0

clo
ck

1<=2clock1==2

sender=Ping
receiver=Pong
deadline=Infinity
afterClock1=0
afterTime1=1
after!

remove-executed-message

s1 s2 s3 s4

s5s6

receive? message == pong

clo
ck2=0

clo
ck

2<=1clock2==1

sender=Pong
receiver=Ping
deadline=2
afterClock2=0
afterTime2=1
after!

remove-executed-message

p1 p2 p3 p4

p5p6


