
Marjan Sirjani
Professor in Software Engineering
Mälardalen University, IDT
Cyber-Physical Systems Analysis group

Sept. 18, 2023
Antwerp, Belgium

Timed Actors and their Formal Verification

Acknowledgement:
All the Rebeca Team,
specially
Ehsan Khamespanah

Combined 30th International Workshop on
Expressiveness in Concurrency
and 20th Workshop on Structural Operational Semantics
AFFILIATED WITH CONCUR 2023
(AS PART OF CONFEST 2023)

https://www.uantwerpen.be/en/conferences/confest-2023/concur/
https://www.uantwerpen.be/en/conferences/confest-2023/

Timed Actors for Modeling and Analysis

I will talk about
Modeling
Analysis and Verification
Applications

– Actors and Timed Rebeca
– Model Checking of Timed Rebeca and Reduction

Techniques, different semantics for Timed Rebeca
– Different Projects

2

Main messages of the talk

• The actor-based language, Rebeca, provides a
friendly and analyzable model for distributed,
concurrent, event-driven software systems
and cyber-physical systems.

• Floating Time Transition System is a natural
event-based semantics for timed actors, giving
us a significant amount of reduction in the
state space, using a non-trivial idea.

3

In this example, the
modeling universe is
calculus and Newton’s
laws.

4

The modelThe target:
the thing
being
modeled

A model is any description of a system
that is not the thing-in-itself.

Yet another model?
Models vs. Reality

Another Model

5
Image by Dominique Toussaint, GNU Free Documentation License, Version 1.2 or later.

Faithfulness is
how well the
model and its
target match

A Physical Realization

6

• In science, the value of a model lies in how well its
behavior matches that of the physical system.

• In engineering, the value of the physical system lies
in how well its behavior matches that of the model.

A scientist asks, “Can I make a model for this thing?”
An engineer asks, “Can I make a thing for this model?”

7

The Value of Models

Useful Models and Useful Things

“Essentially, all models are wrong,
but some are useful.”

Box, G. E. P. and N. R. Draper, 1987: Empirical Model-Building and Response
Surfaces. Wiley Series in Probability and Statistics, Wiley.

“Essentially, all system implementations
are wrong, but some are useful.”

Lee and Sirjani, “What good are models,” FACS 2018.

8

To a scientist, the model is flawed.
To an engineer, the realization is flawed.

Models and Models and Things

9

Models

ThingsScience Engineering

Models

Abstraction Refinement

SynthesisAnalysis

Faithfulness

• Faithfulness of the modeling language is
important

• Properties of the modeling language
should reflect properties of the problem
domain
– A modeling language with encapsulation,

discrete events, concurrency, and
asynchronous interactions will make it easier
to model distributed software systems.

10

11

Power is Overrated,
Go for Friendliness!

• Expressiveness versus Faithfulness and Usability in
Modeling
– Based on my experience with actors

• What is the Expressive Power of a language?

– Generally defined as the breadth of ideas that can
be represented and communicated in a language

– Usually checked by mutually encoding the
formalisms into each other

Power is Overrated, Go for Friendliness! Expressiveness, Faithfulness and Usability in
Modeling - The Actor Experience, Edward Lee Festschrift, 2017

Modeling
with my engineering hat on

The Language, the Thing, the Modeler

• Expressiveness of the modeling language

• Faithfulness of the “modeling language” or
“the model” to the thing

• Usability of the modeling language for the
modeler

12

• Friendly to the system we want to build:
Faithfulness

• Friendly to the user who builds the
system: Usability

• The Map you use has to show the roads
correctly, and also be easily readable.

Compare Google map and Apple map

13P
ow

er
 is

 o
ve

rr
at

ed
, G

o
fo

r F
rie

nd
lin

es
s Friendly Models: Faithful and Usable

Faithfulness

• Less semantic gap between the real world and the
model

• The structures and features supported by the
modeling language match the constructs of
interest in the system being modeled

• Faithfulness: Leads to Domain-specific Modeling
Languages

• Faithfulness is also defined as: The degree of detail incorporated in the
model (but this is not my definition)

14

Model of Computation and
Faithfulness

• MoC: a collection of rules
– govern the execution of the [concurrent] components

and

– the communication between components

• We say a modeling language is faithful to a system
if the model of computation supported by the
language matches the model of computation of
[the features of interest of] the system.

15

CCS

SMV

Java
 C

Modeling languages

RML
Timed Automata

CSP

Promela

FDR

NuSMV

Spin

Java PathFinder

Bandera

SLAM

Abstract

Mathematical

Too heavy
Not
always
formal

Verification Techniques:
• Deduction

• Model checking

Programming languages

Petri net

needs high expertise

causes state explosion

Different approaches for Modeling and Verification

16

UPPAAL

17

Our choice for modeling: Actors

– A reference model for concurrent computation
– Consisting of concurrent, distributed active

objects

• Proposed by Hewitt as an agent-based language (MIT,
1971)

• Developed by Agha as a concurrent object-based language
(Illinois, since 1984)

• Formalized by Talcott (with Agha, Mason and Smith):
Towards a Theory of Actor Computation (CONCUR 1992)

Rebeca: The Modeling Language
Asynchronous and Event-driven
▪ Rebeca: Reactive object language (Sirjani, Movaghar, Peresented at AVoCS 2001)

▪ Based on Hewitt actors

▪ Concurrent reactive objects (OO)
▪ Java like syntax

▪ Communication:
▪ Asynchronous message passing: non-blocking send
▪ Unbounded message queue for each rebec
▪ No explicit receive

▪ Computation:
▪ Take a message from top of the queue and execute it
▪ Event-driven

18

Rebeca - Behavior

An actor:

• A message queue

• Message servers

• State Variable 19

Actor-1 Actor-2

A B
C

X,Y,ZM,N

A

B
A B

X,Y,ZAB

C

M,N

queue queue

Rebeca - Structure

A Rebeca model consists of:
-reactive classes and their behavior definition
-instantiations of rebecs (reactive objects) to run
in parallel

A reactive class is made of three parts:
1. known rebecs (other rebecs to whom

messages can be sent),
2. state variables (like attributes in

object-oriented languages),
3. message server (defining the behavior of the

actor like methods).
20

21

Project editor

Festschrift Papers:
• Ten years of Analyzing Actors: Rebeca Experience (Sirjani, Jaghouri), Carolyn Talcott

Festschrift, 70th birthday, LNCS 7000, 2011

• On Time Actors (Sirjani, Khamespanah), Theory and Practice of Formal Methods, Frank de Boer
Festschrift, 2016

• Power is Overrated, Go for Friendliness! Expressiveness, Faithfulness and
Usability in Modeling - The Actor Experience, Edward Lee Festschrift, 2017

Model and
Property

editor

Model checking
result view

http://www.rebeca-lang.org/

http://www.rebeca-lang.org/

22

Timed Rebeca

• An extension of Rebeca for real time systems
modeling
– Computation time (delay)

– Message delivery time (after)

– Periods of occurence of events (after)

– Message expiration (deadline)

Timed Rebeca with an example: Network on
Chip

24

Exploring Design Decisions:
• Evaluating routing algorithms
• Buffer length
• Choose the best place for the memory

Globally Asynchronous-
Locally Synchronous NoC

25

XY routing algorithms

⚫ GALS NoC
 ASPIN: Two-dimensional mesh GALS NoC

Communication Protocol

NoC is a communication paradigm on
a chip, typically between cores in
a system on a chip (SoC).

26

neighbor.giveAck

sender.getAck

▪Four phase handshake communication protocol: the

channel is blocked until the packet arrives to the other

router.

▪The sender put the packet in the output buffer along with

the request signal to the receiver and doesn’t send the next

packet before receiving the Ack.

reactiveclass Router{
 knownrebecs
 {Router[4] neighbor, Core myCore}
 statevars{int[4] buffer;}
 Router (myId-row, myId-col) { …
 }
 msgsrv reqSend() {
 neighbor[x]. giveAck() after(3); . . .
 }
 msgsrv getAck() {
 // receive ack from the receiver
 // get ready for receiving the next
 packet …
 }
 msgsrv giveAck (…) {
 //if the message is for my core use it
 myCore.forMyCore()
 //send ack to the sender
 sender.getAck() after(3);
 // if not route it to the receiver …
 } }

ASPIN: Rebeca abstract model

Actor type
and its

message
servers

Asynchronous
message
sending

Constructor

A
message

server

reactiveclass Core{

 knownrebecs {Router myRouter}

 statevars{ …}

 Core (…) {

 ….

 }

 msgsrv forMyCore() {

 // get the Packet and use it

 . . .

 }

main(){
 Router r00(r02,r10,r01,r20)(0,0);

 Router r01(r00,r11,r02,r21)(0,1);

 …
 Core c00(r00)

 Core c01(r01)

 …
 }

Instances of
different actors

Known rebecs
Parameters

28

reqSend:
//Route the Packet
neighbor.giveAck;

giveAck:
//if I am the final Receiver
//then Consume the Packet
sender.getAck;
myCore.forMyCore;

//else if my buffer is not
full
//get the Packet
sender.getAck
//and route it ahead
self.reqSend;

else (my buffer is full) wait

getAck:
//send the Packet
//set the flag of your port to free

1: reqSend 2: neighbor.giveAck

3: sender.getAck

4:
forM

yCore

5:
 re

qS
en

d

reactiveclass Router{
 knownrebecs {Router[4] neighbor}
 statevars{int[4] buffer;}
 Router (…) {
 ….
 }
 msgsrv reqSend() {
 delay(2);
 neighbor[x]. giveAck() after(3) deadline(6);
 . . .
 }

msgsrv giveAck (…) {
 //if the message is for my core use it
 myCore.forMyCore()
 //send ack to the sender
 sender.getAck() after(3);
 // if not and buffer not full then route it to the receiver …
 // if buffer full then busy-wait until buffer empty
 else self.giveAck() after(10),
 }
 …
}

ASPIN: Rebeca abstract model
29

Time progress
because of

computation delay

Communication
delay

Deadline for the
receiver

periodic tasks

Evaluation of different memory
locations for ASPIN 8×8

30

⚫ Consider 5 cores and their access time to the memory

⚫ 3 choices for memory placement

⚫ 40 packets are injected

⚫ High congestion in area 1 and 2

⚫ Unlike our expectation
M1 is a better choice
than M2

⚫ The packet injection is
based on an application
(note that cores have
different roles)

Modeling NoC in TRebeca
31

ASPIN Component

Router + Core

Buffer

Routing algorithm

Scheduling algorithm

Packet

Channel

Communication
protocol

Model in Rebeca

Rebec

Rebec queue (write/read delays by
after)

Message servers (delay by after)

Schedular of the rebec queue (delay
by after)

Destination address & ID

Message passing

Message servers

Keep the constructs and features that affect the properties of interest and check the
following:

1. Possible Deadlock
2. Successful sending and receiving of packets
3. Estimating the maximum end-to-end packet latency

Model checking: 3 seconds

HSPICE: 24 hours

Much less details.

Showed the same trend.

Go Through Different models at
Different Levels

<S
1
′,S

2
,S

3
>

<S
1
,S

2
,S

3
>

<S
1
′,S’

2
,S

3
>

<S
1
,S’

2
,S

3
>

Routing
Protocol

Routing
Protocol

Routing
Protocol

Real World

Actor

Actor Actor

A

B C

Actor Model State Space

Efficient Model Checking of Timed Actors:
Focus on Events

State Space

33

Model

To do Analysis

⚫ Timed Automata
⚫ Timed Transition System
⚫ Floating Time Transition

System

Standard Semantics:
Timed Transition System

• In TTS transitions are of three types:
– Passage of time

– Taking a message from the queue to execute: event

– Silent transition τ: internal actions in an actor

34

Semantics of a simple Timed-Rebeca Model:

Timed Transition System
reactiveclass RC1 (3) {

knownrebecs {

RC2 r2;

}

RC1() {

self.m1();

}

msgsrv m1() {

delay(2);

r2.m2();

delay(2);

 r2.m3();

self.m1() after (10);

}

}

reactiveclass RC2 (4) {
knownrebecs {
RC1 r1;

}
RC2() { }
msgsrv m2() { }

msgsrv m3() { }
}

main {
RC1 r1(r2):();
RC2 r2(r1):();

}

msgsrv m1() {
1 delay(2);
2 r2.m2();
3 delay(2);
4 r2.m3();
5 self.m1() after (10);

}

Line number as
program counter

Timed-Transition System of the
simple model

• Eight different
states are
generated for one
round of execution

• Unbounded
transition system

msgsrv m1() {
 1 delay(2);
 2 r2.m2();
 3 delay(2);
 4 r2.m3();
 5 self.m1() after (10);

}

Properties in an event-based system

• Properties that we care about the most:
– Distance of occurrence of two events
– Event precedence

• Remember, in TTS the transitions are of three
types:
– Passage of time
– Taking a message from the queue to execute: event
– Silent transition τ: internal actions in an actor

37

 Real-time Patterns
(Koymans, 1990), (Abid et al., 2011), (Bellini et al., 2009) and (Konrad et al., 2005), (Dwyer et al.,
1999)

• Maximal distance
– Every e1 is followed by an e2 within x time units

• Exact distance
– Every e1 is followed by an e2 in exactly x time units

• Minimal distance
– Two consecutive events of e are at least x time units apart

• Periodicity
– Event e occurs regularly with a period of x time units

• Bounded response
– Each occurrence of an event e is responded within a

maximum number of time units
• Precedence

– Within the next x time units, the occurrence of e1
precedes the occurrence of e2

38

⚫ Properties that we care about the most:
◦Distance of occurrence of two events

◦ Event precedence

So, we proposed

• An event-based semantics for Timed Rebeca:

• Floating Time Transition System

39

Floating Time Transition System:
Event-based Timed-Rebeca Semantics

• Formal semantics given as SOS rules

• The main rule is the schedular rule:

40

The scheduler and progress of time

• The scheduler picks up messages from the bag based on their time tags
and execute the corresponding methods.

• delay statements change the value of the current local time, now, for
the considered rebec.

• The time tag for the message is the current local time (now), plus value
of the after

• The scheduler picks the message with the smallest time tag of all the
messages (for all the rebecs) in the message bag.

• The schedular checks if a deadline is missed.

• The variable now is set to the maximum between the current time of
the rebec and the time tag of the selected message.

41

State space reduction:
a simple Timed-Rebeca Model

reactiveclass RC1 (3) {

knownrebecs {

RC2 r2;

}

RC1() {

self.m1();

}

msgsrv m1() {

delay(2);

r2.m2();

delay(2);

 r2.m3();

self.m1() after (10);

}

}

reactiveclass RC2 (4) {
knownrebecs {
RC1 r1;

}
RC2() { }
msgsrv m2() { }

msgsrv m3() { }
}

main {
RC1 r1(r2):();
RC2 r2(r1):();

}

msgsrv m1() {
1 delay(2);
2 r2.m2();
3 delay(2);
4 r2.m3();
5 self.m1() after (10);

}

Line number as
program counter

FTTS of the simple model

• Four states are generated for
one round of execution

• PCs are omitted

• Unbounded state space is
generated

43

44

TTS versus FTTS

Bounded Floating-Time Transition
System

• A notion of state equivalence by shifting the
local times of rebecs

• Time in Timed-Rebeca models is relative
– Uniform shift of time to past or future has no

effect on the execution of statements

45

Bounding the Floating-Time Transition
System

46

Ticket Issued

Ticket Issued, 33

Bounded Floating-Time Transition
System: an example

• A shift-time transition,
between states 16 and
20

• Bounded floating-time
transition system and
floating-time
transition system are
bisimilar.

47

Bounded FTTS of the simple model

• Bounded transition
system is generated

• Contents of the
states are the same
as FTTS

48

Deadlock and schedulability check

• We keep the relative distance between values
of all the timing values of each state (relative
timing distances are preserved)

• Deadlines are set relatively so time shift has
no effect on deadline-miss

• For checking “deadline missed” and
“deadlock-freedom” relative time is enough

49

TTS vs FTTS State Space Size

50

• About 50% state space reduction

Model Name Number of Rebecs FTTS State Space
Size

TTS State
Space Size

Ticket Service
System

3 6 12

4 43 86

5 282 532

6 2035 3526

7 17849 31500

CSMA/CD 4 54 108

Experimental results

• Three models, three tools

51

Our reduction technique: distilled

• Event-based analysis - maximum progress of
time based on events (not timer ticks)
– Generating no new states because of delays, each

rebec has its own local time in each state

• Making use of isolated message server
execution of actors
– no shared variables, no blocking send or receive,

single-threaded actors, non-preemptive execution of
each message server

• Check the state equivalence by shifting the local
times of concurrent elements in case of
recurrent behaviors

52

Comparing to others

• Real-time Maude
– It ticks … so, explosion

– Bounded model checking

• Timed Automata
– Produce many automata and many clocks for an

asynchronous system – so, explosion

53

A Point:
FTTS, Considering only the time-tags

reactiveclass Actor1(3) {
Actor1() {

self.job1();
}
msgsrv job1() {

self.job2() after(1);
delay(5);

}
msgsrv job2() {
}
msgsrv job3() {

self.job3() after(1);
}

}

54

reactiveclass Actor2(3) {
knownrebecs {

Actor1 a1;
}
Actor2() {

self.job4() after(2);
}
msgsrv job4() {

a1.job3() after(2);
}

}

main {
Actor1 actor1():();
Actor2 actor2(actor1):();

}

55

Simple FTTS: Consider only Smallest Time Tag

56

actor1 <now>0
<queue> arrival="0" deadline="infinity" sender="actor1">job1
actor2 <now>0
<queue>arrival="2" deadline="infinity" sender="actor2">job4

actor1 <now>5
<queue> arrival="1" deadline="infinity" sender="actor1">job2
actor2 <now>2
<queue> arrival="2" deadline="infinity" sender="actor2">job4

actor1 <now>5
<queue> arrival="1" deadline="infinity" sender="actor1">job2

 arrival="4" deadline="infinity" sender="actor2">job3
actor2 <now>5
<queue>

actor1 <now>5
<queue> arrival="4" deadline="infinity" sender="actor2">job3
actor2 <now>5
<queue>

actor1 <now>6
<queue> arrival="6" deadline="infinity" sender="actor1">job3
actor2 <now>6
<queue>

57

Network on Chip

58

Design Decisions:
routing algorithms
Buffer length
Memory Allocation

Siamak Mohammadi, Zeinab Sharifi, UT

Zeinab Sharifi, Mahdi Mosaffa, Siamak Mohammadi, and Marjan Sirjani: Functional and
Performance Analysis of Network-on-Chips Using Actor-based Modeling and Formal
Verification, AVoCS, 2013.
 https://rebeca-lang.org/assets/papers/2013/Performance-Analysis-of-NoC.pdf

Network Protocols

Deadlock and loop-freedom of
Mobile Adhoc Networks

Behnaz Yousefi, Fatemeh Ghassemi, and Ramtin Khosravi: Modeling and Efficient
Verification of Wireless Ad hoc Networks, volume 29, Issue 6, pp 1051–1086, Formal
Aspects of Computing, 2017.
https://link.springer.com/article/10.1007/s00165-017-0429-z

Fatemeh Ghassemi, Ramtin Khosravi, UT

Design Decisions Bug Check

https://rebeca-lang.org/assets/papers/2013/Performance-Analysis-of-NoC.pdf
https://link.springer.com/article/10.1007/s00165-017-0429-z

Smart Structures

59

Schedulability Analysis of
Distributed Real-Time Sensor
Network: Finding the best
configuration

Gul Agha, OSI, UIUC and Ehsan Khamespanah, UT

Ehsan Khamespanah, Kirill Mechitov, Marjan Sirjani, Gul Agha: Modeling and Analyzing
Real-Time Wireless Sensor and Actuator Networks Using Actors and Model Checking,
Software Tools for Technology Transfer, 2017.
https://rebeca-lang.org/assets/papers/2017/Modeling-and-Analyzing-Real-Time-Wireless-Sensor-an
d-Actuator-Networks-Using-Actors-and-Model-Checking.pdf

Not only Safety and Robustness

but also Performance, Cost and

User Satisfaction

Smart Transport Hubs

Minimize:

Number of service disruptions

Number of mobility resources in smart
hubs

Cost of mobility for commuters

Travel time for commuters

Travel distance for commuters

Andrea Polini, Francesco De Angelis, Unicam Smart Mobility Lab.

Jacopo de Berardinis, Giorgio Forcina, Ali Jafari, Marjan Sirjani:
Actor-based macroscopic modeling and simulation for smart urban planning. Sci. Comput. Program.
168: 142-164 (2018)
https://www.sciencedirect.com/science/article/pii/S0167642318303459?via%3Dihub

Performance Optimization Resource Management

https://rebeca-lang.org/assets/papers/2017/Modeling-and-Analyzing-Real-Time-Wireless-Sensor-and-Actuator-Networks-Using-Actors-and-Model-Checking.pdf
https://rebeca-lang.org/assets/papers/2017/Modeling-and-Analyzing-Real-Time-Wireless-Sensor-and-Actuator-Networks-Using-Actors-and-Model-Checking.pdf
https://www.sciencedirect.com/science/article/pii/S0167642318303459?via%3Dihub

Air Traffic Control

60

Adaptive Air Traffic Control:
Safe rerouting of airplanes using
Magnifier

Volvo CE Quarry Site

Safe and optimized fleet control

Volvo-CE, Stephan Baumgart and Torbjörn MartinssonUC Berkeley, Edward Lee and Sharif, Ali Movaghar

Maryam Bagheri, Marjan Sirjani, Ehsan Khamespanah, Christel Baier, Ali Movaghar,
Magnifier: A Compositional Analysis Approach for Autonomous Traffic Control,
IEEE Transactions on Software Engineering, 2021
https://rebeca-lang.org/assets/papers/2021/Magnifier-A-Compositional-Analysis-Approac
h-for-Autonomous-Traffic-Control.pdf

Marjan Sirjani, Giorgio Forcina, Ali Jafari, Stephan Baumgart, Ehsan Khamespanah, Ali
Sedaghatbaf: An Actor-based Design Platform for System of Systems, IEEE 43th Annual
Computers, Software, and Applications Conference (COMPSAC), 2019
https://rebeca-lang.org/assets/papers/2019/An-Actor-based-Design-Platform-for-System-of-Sy
stems.pdf

Adaptive Flow ManagementAdaptive Flow Management

https://rebeca-lang.org/assets/papers/2021/Magnifier-A-Compositional-Analysis-Approach-for-Autonomous-Traffic-Control.pdf
https://rebeca-lang.org/assets/papers/2021/Magnifier-A-Compositional-Analysis-Approach-for-Autonomous-Traffic-Control.pdf
https://rebeca-lang.org/assets/papers/2019/An-Actor-based-Design-Platform-for-System-of-Systems.pdf
https://rebeca-lang.org/assets/papers/2019/An-Actor-based-Design-Platform-for-System-of-Systems.pdf

61

Connected Medical Systems

Local properties of devices are assured by
the vendors at the development time.

Verify the satisfaction of timing
communication requirements.

Helpful for dynamic network configuration
or capacity planning.

John Hatcliff, U. of Kansas, and Fatemeh Ghassemi, UT

Mahsa Zarneshan, Fatemeh Ghassemi, Ehsan Khamespanah, Marjan Sirjani, John Hatcliff:
Specification and Verification of Timing Properties in Interoperable Medical Systems. Log. Methods
Comput. Sci. 18(2) (2022)
https://lmcs.episciences.org/9639

Time Analysis

Model-Based Cyber-Security

• Runtime monitor to check the
system behavior using a Tiny
Digital Twin

SRI, Carolyn Talcott

Fereidoun Moradi, Maryam Bagheri, Hanieh Rahmati, Hamed Yazdi, Sara Abbaspour
Asadollah, Marjan Sirjani, Monitoring Cyber-Physical Systems using a Tiny Twin to
Prevent Cyber-Attacks, 28th International Symposium on Model Checking of
Software (SPIN), 2022
https://rebeca-lang.org/assets/papers/2022/Monitoring-Cyber-Physical-Systems-Using-a-Tin
y-Twin-to-Prevent-Cyber-Attacks.pdf

Anomaly Detection

https://lmcs.episciences.org/9639
https://rebeca-lang.org/assets/papers/2022/Monitoring-Cyber-Physical-Systems-Using-a-Tiny-Twin-to-Prevent-Cyber-Attacks.pdf
https://rebeca-lang.org/assets/papers/2022/Monitoring-Cyber-Physical-Systems-Using-a-Tiny-Twin-to-Prevent-Cyber-Attacks.pdf

AdaptiveFlow

62

VCE Simulator

63

Cyber-Security Assurance
Using Model Checking and Monitoring

Find the attacks like finding the anomalies

Use a
Tiny Digital Twin
as a reference model

Monitoring at Runtime
Temperature Control System (TPS)

64

Window

Room

Controller

open/
close

Commands:
Activate Heating/Cooling
Switch off

Sensor Data:
Temperature value

ATTACKs:
Dropping packets
False sensor data injection
Faulty control commands

DAMAGEs:
Degrades the temperature
regulation process,
Pushes temperature value out of
the defined range

The wireless communication network is
vulnerable to malicious cyber-attacks!!

HC_Unit
CMDs

Sensor
data

Sensor

Verification-Driven Iterative
Development of Cyber-Physical System

65Verification-Driven Iterative Development of Cyber-Physical System

Marjan Sirjani, Luciana Provenzano, Sara
Abbaspour Asadollah, Mahshid Helali
Moghadam, Mehrdad Saadatmand:
Towards a Verification-Driven Iterative
Development of Software for
Safety-Critical Cyber-Physical Systems,
Journal of Internet Services and
Applications, 2021
https://rebeca-lang.org/assets/papers/202
0/Towards-a-Verification-Driven-Iterative-
Development-of-Cyber-Physical-System.pdf

More models:
We need more models at each phase

https://rebeca-lang.org/assets/papers/2020/Towards-a-Verification-Driven-Iterative-Development-of-Cyber-Physical-System.pdf
https://rebeca-lang.org/assets/papers/2020/Towards-a-Verification-Driven-Iterative-Development-of-Cyber-Physical-System.pdf
https://rebeca-lang.org/assets/papers/2020/Towards-a-Verification-Driven-Iterative-Development-of-Cyber-Physical-System.pdf

Verification of Cyber-Physical Systems

66

(UC Berkeley, Edward Lee)

A polyglot meta-language for
deterministic, concurrent,
time-sensitive systems.

Lingua Franca is a programming language based on the Reactor
model of computation for building cyber-physical systems.

Reactors and Rebeca: Natural mapping of semantics
(similar syntax)

Verification of cyberphysical systems
M Sirjani, EA Lee, E Khamespanah
Mathematics 8 (7), 1068, 2020

Marten Lohstroh , Martin Schoeberl, Andrés Goens, Armin
Wasicek, Christopher D. Gill, Marjan Sirjani, Edward A. Lee:
Actors Revisited for Time-Critical Systems. DAC 2019: 152

67

Experience Distilled as Transparent Actors
● Looking into different application domains

○ Scheduling and end-to-end delays of Sensor Networks and Cyber-Physical Systems

■ Volvo cars, Volvo Trucks, Deif – Smart Structures (Gul Agha), Interoperable Medical Systems
(John Hatcliff)

○ Optimisation of Flow Management

■ Volvo CE, Isavia, NoC (Siamak Mohammadi, Smart Hubs (Andrea Polini)

○ Model Checking Network Protocols, CPS

■ AODV, LF, all the above

● Different Actor-based Languages

○ Rebeca, Timed Rebeca, Hewitt-Agha actor-based languages

○ Creol, ABS, Concurrent object languages

○ Lingua Franca and Edward Lee’s actors
68

Transparent Actors

69

Transparent Actors
 Experience Distilled

(Fatemeh Ghassemi, Ehsan Khamespanah, Hossein Hojjat, 2023)

Variability Points

Network Delay,
Priority …

FIFO, EDF,
pattern-match …

Overwrite, drop…

Composition Level
Which actor to schedule:

NonDet, Priority

Fatemeh Ghassemi, Marjan Sirjani, Ehsan Khamespanah, Mahrokh Mirani, Hossein Hojjat: Transparent Actor Model. FormaliSE 2023: 97-107

References

• For publications, see

http://rebeca-lang.org/publications

• For projects, see

http://rebeca-lang.org/projects

70

http://rebeca-lang.org/publications
http://rebeca-lang.org/projects

• QUESTIONS?

71

• End of Slides

72

Corollary 1. Transition systems of Timed Rebeca models in TTS and FTTS are
equivalent with respect to all formulas that can be expressed in modal µcalculus
with weak modalities where the actions are taking messages from bags.

Timed Rebeca Model of Ping-Pong

reactiveclass Ping(3) {

knownrebecs {Pong pong;}

Ping() {

self.ping();

}

msgsrv ping() {

pong.pong() after(1);

delay(2);

}

}

reactiveclass Pong(3) {

knownrebecs {Ping ping;}

Pong() {

}

msgsrv pong() {

ping.ping() after (1) deadline(2);

delay(1);

}

}

main {

Ping ping(pong):();

Pong pong(ping):();

}

Timed Transition System of Ping-Pong

τ:Ping.ping

Ping.ping

time +=1

Pong.pong

time +=1

τ:Pong.pongτ:Ping.ping

τ:Pong.pongPing.ping

τ:Pong.pong Ping.ping

Ping.ping

Ping.ping

Pong.pong

time+=1

τ:Pong.pong

τ:Ping.ping

time+=1

Without after and deadline

Start executing a
method

delay

continue executing
a method

With after and deadline

Timed Automata of Timed Rebeca
Models

• Three types of automata
– A timed automaton for modeling the behavior of

each rebec

– A timed automaton for each message bag

– A timed automaton for simulating the behavior of
after

Timed Automata for Ping and Pong
(Model without after and deadline)

reactiveclass Ping(3) {

knownrebecs {Pong pong;}

Ping() {self.ping();}

msgsrv ping() {

pong.pong();

delay(2);

}

}

reactiveclass Pong(3) {

knownrebecs {Ping ping;}

Ping() {}

msgsrv ping() {

ping.ping();

delay(1);

}

}

receive? message == ping

clo
ck1=0

clo
ck

1<=2

clock1==2

sender=ping
receiver=pong
send!

remove-executed-message

s1 s2 s3 s4

s5s6

receive? message == pong

clo
ck2=0

clo
ck

2<=1

clock2==1

sender=pong
receiver=ping
send!

remove-executed-message

p1 p2 p3 p4

p5p6

Timed Automata for Message Buffers

messageBag[0] != NULL

receive!

send?
insertInBuffer()

i:int[1,N]
messageBag[i] != NULL &&
deadline[i] < clock[i]

discard(i)

Synchronized
with receive? in

the rebec

Receiving
messages

Discard messages
which missed

their deadlines

q1

Timed Automata for After

after?
insertInBuffer()

messageBag[i] != NULL &&
time[i] == clock[i]

takeFromBuffer()
send!

Send the messages
when time enough is
passed according to
the after parameter

Receive messages
and put them in a

buffer

r1

Region Transition System of Timed
Automata Model

• Labels of states
– s: Ping actor,

– p: Pong actor,

– q: Ping queue,

– t: Pong queue

– c1: local clock of Ping actor,

– c2: local clock of Pong actor

Region Transition System of Timed Automata
Model (without after and deadline)

• A simple trace of the region transition
system

receive! send?

discard(i)

q1

receive! send?

discard(i)

t1

receive? message
== pong

c2=0
c2<=1

c2==1

se
n

d
er

=P
o

n
g

re
ce

iv
er

=P
in

g
se

n
d

!

R
em

o
ve

ex
ec

u
te

d
m

es
sa

ge

p1 p2 p3

p4p5p6

receive? message
== ping

c1=0
c1<=2

c1==2
se

n
d

er
=P

in
g

re
ce

iv
er

=P
o

n
g

se
n

d
!

R
em

o
ve

ex
ec

u
te

d
m

es
sa

ge
s1 s2 s3

s4s5s6

s1, q1, p1,
t1

c1=0, c2=0

s2, q1, p1,
t1

c1=0, c2=0

s3, q1, p1,
t1

c1=0, c2=0

s4, q1, p1,
t1

c1=0, c2=0

s4, q1, p2,
t1

c1=0, c2=0

receive message
==ping

send

c1
=0

s5, q1, p1,
t1

c1=0, c2=0

re
ce

iv
e

s5, q1, p2,
t1

c1=0, c2=0

s4, q1, p3,
t1

c1=0, c2=0

s5, q1, p3,
t1

c1=0, c2=0

s4, q1, p4,
t1

c1=0, c2=0
message
== pong

send

message
== pong receive

c1=0c1=0

s4, q1, p5,
t1

c1=0, c2=0

c1=0

send

c2=0

Region Transition System of Timed Automata
Model (Model without after and deadline)

Ping.ping

Ping.ping

Pong.pong

time +=1

τ:Pong.pong

τ:Ping.ping

time +=1

RTS of the Timed
Automata model

TTS of the Timed
Rebeca model

message==pong

message==pong

c2=0

receive

message==ping

send

c1=0

c1=0

send c1=0

sendc1=0

0<c1<1, 0<c2<1

c1=1, c2=1

c1=0

receive

receive

c2=0

Ping.ping

Ping.ping

Pong.pong

FTTS of the Timed
Rebeca model

Timed Automata for Ping-Pong
(Model with after and deadline)

reactiveclass Ping(3) {

knownrebecs {Pong pong;}

Ping() {self.ping();}

msgsrv ping() {

 pong.pong() after(1);

 delay(2);

}

}

reactiveclass Pong(3) {

knownrebecs {Ping ping;}

Ping() {}

msgsrv ping() {

 ping.ping() after (1) deadline(2);

 delay(1);

}

}

receive? message == ping

clo
ck1=0

clo
ck

1<=2clock1==2

sender=Ping
receiver=Pong
deadline=Infinity
afterClock1=0
afterTime1=1
after!

remove-executed-message

s1 s2 s3 s4

s5s6

receive? message == pong

clo
ck2=0

clo
ck

2<=1clock2==1

sender=Pong
receiver=Ping
deadline=2
afterClock2=0
afterTime2=1
after!

remove-executed-message

p1 p2 p3 p4

p5p6

