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Timed Actors for Modeling and Analysis

| will talk about
Modeling
Analysis and Verification

Applications

— Actors and Timed Rebeca

— Model Checking of Timed Rebeca and Reduction
Techniques, different semantics for Timed Rebeca

— Different Projects



Main messages of the talk

* The actor-based language, Rebeca, provides a
friendly and analyzable model for distributed,
concurrent, event-driven software systems
and cyber-physical systems.

* Floating Time Transition System is a natural
event-based semantics for timed actors, giving
us a significant amount of reduction in the
state space, using a non-trivial idea.



Yet another model?

Models vsgk . -
A model is any description of a system

that is not the thing-in-itself.

The target: The model
the thing
. [
belng z(t) = x(0) + v(7)dT
modeled o
plt) = 1((})—|—; F(r)dr

In this example, the
modeling universe is
calculus and Newton’s
laws.




Another Model

Faithfulness is
how well the
model and its
target match

S d
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A Physical Realization




The Value of Models

* |n science, the value of a model lies in how well its
behavior matches that of the physical system.

* In engineering, the value of the physical system lies
in how well its behavior matches that of the model.

A scientist asks, “Can | make a model for this thing?”
An engineer asks, “Can | make a thing for this model?”



Useful Models and Useful Things

To a scientist, the model is flawed.
To an engineer, the realization is flawed.

“Essentially, all models are wrong,

but some are useful.”

Box, G. E. P. and N. R. Draper, 1987: Empirical Model-Building and Response
Surfaces. Wiley Series in Probability and Statistics, Wiley.

“Essentially, all system implementations

are wrong, but some are useful.”
Lee and Sirjani, “What good are models,” FACS 2018.



Models and Models and Things

Abstraction Refinement

Analysis Synthesis

' Science

Engineeringl
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Faithfulness

e Faithfulness of the modeling language is
Important

* Properties of the modeling language
should reflect properties of the problem
domain

— A modeling language with encapsulation,
discrete events, concurrency, and
asynchronous interactions will make it easier
to model distributed software systemes.



Power is Overrated,

Go for Friendliness!

e Expressiveness versus Faithfulness and Usability in
Modeling

— Based on my experience with actors

 What is the Expressive Power of a language?

— Generally defined as the breadth of ideas that can
be represented and communicated in a language

— Usually checked by mutually encoding the
formalisms into each other

Power is Overrated, Go for Friendliness! Expressiveness, Faithfulness and Usability in
Modeling - The Actor Experience, Edward Lee Festschrift, 2017



Modeling

with my engineering hat on

The , the Thing, the

* Expressiveness of the modeling language

* Faithfulness of the “modeling language” or
“the model” to the thing

* Usability of the modeling language for the
modeler



oooooo

GOOGLE  APPLE
AAAAAA

Models: Faithful and Usable

* Friendly to the system we want to build:
Faithfulness

* Friendly to the user who builds the
system: Usability

* The Map you use has to show the roads
correctly, and also be easily readable.

Compare Google map and Apple map

Power is overrated, Go for Friendliness .



Faithfulness

* Less semantic gap between the real world and the
model

e The structures and features supported by the
modeling language match the constructs of
interest in the system being modeled

* Faithfulness: Leads to Domain-specific Modeling
Languages

e Faithfulness is also defined as: The degree of detail incorporated in the
model (but this is not my definition)



Model of Computation and

Faithfulness

e MoC: a collection of rules

— govern the execution of the [concurrent] components
and

— the communication between components

 We say a modeling language is faithful to a system
if the model of computation supported by the
language matches the model of computation of
[the features of interest of] the system.



Different approaches for Modeling and Verification

Modeling languages
O
"CCS  CSP 4| , -
UPPAAL

Timed Autofnata

Verification Techniques: S O
* Deduction SMV

needs high expertise
Java PathFinder

e Model checking
8¢
Bandera
> Cslam

Promela

causes state explosion

Programming langua

Too heavy

O olo Java©9°




Our choice for modeling: Actors

— A reference model for concurrent computation

— Consisting of concurrent, distributed active
objects

* Proposed by Hewitt as an agent-based language (MIT,
1971)

* Developed by Agha as a concurrent object-based language
(Illinois, since 1984)

* Formalized by Talcott (with Agha, Mason and Smith):
Towards a Theory of Actor Computation (CONCUR 1992)



Rebeca: The Modeling Language

Asynchronous and Event-driven

= Rebeca: Reactive object 1anguage (sirjani, Movaghar, Peresented at AVoCs 2001)

= Based on Hewitt actors

= Concurrent reactive objects (OO) o = Q
= Java like syntax - o=

. . Acto -
= Communication: \
. . - Actor
= Asynchronous message passing: non-blocking send \

= Unbounded message queue for each rebec

= No explicit receive

= Computation:
= Take a message from top of the queue and execute it
= Event-driven



Rebeca - Behavior

An actor:

* A message queue
* Message servers
e State Variable



Rebeca - Structure

A Rebeca model consists of:
-reactive classes and their behavior definition
-instantiations of rebecs (reactive objects) to run
in parallel

A reactive class is made of three parts:
1. known rebecs (other rebecs to whom
messages can be sent),
2. state variables (like attributes in
object-oriented languages),
3. message server (defining the behavior of the
actor like methods).




¢« C' @ rebeca-lang.org * 00

Rebeca Home Projects Tools Documents Examples Publications About

http://www.rebeca-lang.org/

Rebeca Modeling Language
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Actor-based Language with Formal 7 e == s aiamem=
Foundation ~

J ' Juage with a formal foundation, designed in an effort to bridge th = « i
~ be considered as a reference model for concurrent computation,
3 i f‘tform for developing object-based concurrent systems in practic

Q =, {25 ; - Model checking
result view

Festschrift Papers:

* Ten years of Analyzing Actors: Rebeca Experience (Sirjani, Jaghouri), Carolyn Talcott
Festschrift, 70" birthday, LNCS 7000, 2011

* On Time Actors (Sirjani, Khamespanah), Theory and Practice of Formal Methods, Frank de Boer
Festschrift, 2016

* Power is Overrated, Go for Friendliness! Expressiveness, Faithfulness and
Usability in Modeling - The Actor Experience, Edward Lee Festschrift, 2017 21
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Timed Rebeca

* An extension of Rebeca for real time systems
modeling
— Computation time (delay)
— Message delivery time (after)
— Periods of occurence of events (after)

— Message expiration (deadline)



Timed Rebeca with an example: Network on
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Exploring Design Decisions:
e Evaluating routing algorithms

e Buffer length
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Globally Asynchronous-

Locally Synchronous NoC

NoC is a communication paradigm on

a chip, typically between cores in =N
a system on a chip (SoC). frao ==
| ; ~‘<,L—_~: (] g 2
\\ y L Db Al e

® GALS NoC
ASPIN: Two-dimensional mesh ALS NoC

XY routing algorithms

Communication Protocol
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=sFour phase handshake communication protocol: the

channel is blocked until the packet arrives to the other

router.
*The sender put the packet in the output buffer along with

the request signal to the receiver and doesn’t send the next

packet before receiving the Ack.



ASPIN: Rebeca abstract model

reactiveclass Router{ reactiveclass Core{
| knownrebecs knownrebecs {Router myRouter}
Router[4] neighbor, Core myCore}
- ’ statevars/ ...
Attor typest tevars{int[4] buffer;} ted

andits p uter ( Core(...){

message }
servers

myld-row, myld-col) { .. Asynchfonous

srv reqSend() {
neighbor[x]. giveAck() after(3),—~ msgsrv forMyCore() {
// get the Packet and use it

| |

Constructorsgsrv getAck() {
//receive ack from the receiver

[/ get ready for receiving the next }
A packet ... main({
message Router r00(r02,r10,r01,r20)(0,0);
server rsgsrv giveAck (...) { Router r01(r00,r11,r02,r21)(0,1);
//if the message is for my core use it )
myCore.forMyCore() o
//send ack to the sender Core c00(r00) Instances of
sender.getAck() after(3); Core c01(r01) different a toks
// if not route it to the receiver ... |
b }

Parameters

Known rebec
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giveAck:

//if I am the final Receiver
//then Consume the Packet

regSend: ) o

//Route the Packet sender.getack;

neighbor.giveAck; myCore.forMyCore;
//else if my buffer is not

getAck: full

//send the Packet //get the Packet

//set the flag of your port to free sender.getAck

//and route it ahead
self.regSend;



ASPIN: Rebeca abstract model

reactiveclass Router{
knownrebecs {Router[4] neighbor}
statevars{int[4] buffer;}

Router ( ... ) {
Deadline for the ]
} receiver
msgsrv reqSend() {
—— delay(2);
Time progress neighbor([x]. giveAck() after(3) deadline(6);

because of
computation delay

msgsrv giveAck (...) {

//if the message is for my core use it o
myCore.forMyCore() Communication
//send ack to the sender delay
sender.getAck() after(3);
// if not and buffer not full then route it to the receiver ...
// if buffer full then busy-wait until buffer empty

else self.giveAck() after(10), —

i L periodic tasks
}




Evaluation of different memory

locations for ASPIN 8x8

® Consider 5 cores and their access time to the memory

® 3 choices for memory placement : :|| :: ::Clll: ll: :: ll: :
= T

® 40 packets are injected sicinls = Ei=ls
@ High congestion in area 1 and 2 LI L It WL L[]

|||l|||||04|2||||I|
3 300 L D O L L [es]
F ol | O0D0OE O O OO
i ninininini=inln

~ ==1 | @ Unlike our expectation
= M1 is a better choice
than M2

i BB ® The packet injection is

2 c2 3 ca cs based on an application
; (note that cores have

different roles)

150

100

50 -

Maximum Memory Access
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Modeling NoC in TRebeca

ASPIN Component Model in Rebeca

Router + Core Rebec

Model checking: 3 seconds
HSPICE: 24 hours

Channel

Communication
protocol

Much less details.

Showed the same trend.



Go Through Different models at

Different Levels

o0

Real World Actor Model State Space




Efficient Model Checking of Timed Actors:
Focus on Events

Model

l To do Analysis

State Space

® Timed Automata
® Timed Transition System

® Floating Time Transition
System



Standard Semantics:

Timed Transition System

* In TTS transitions are of three types:
— Passage of time
— Taking a message from the queue to execute: event
— Silent transition T: internal actions in an actor



Semantics of a simple Timed-Rebeca Model:

Timed Transition System

reactiveclass RC1 (3) { reactiveclass RC2 (4) {
knownrebecs { knownrebecs {
RC2 r2; RC1rl;
}
RC2() {'}

Line number as
program counter

; [}

msgsrv m2() { }

MSgSrv I MSgsSrv m1(){

delay(2); 1 delay(2);

r2.m2(); 2 r2.m2();

delay(2); 3 delay(2);

r2.m3(); [4 r2.m3();

self.m1() |2 self.m1() after (10);
} }




msgsrv m1()
1 delay(2);
2 r2.m2();
3 delay(2);
4 r2.m3();
5 self.m1() afi

}

time=0

time =2

time =2

time=4

ltime = time + 2

S5
queue | -
= pc ml:4
queue | -
o
| - pc -,
7(rl)
S6
queue | -
o |
. pc A
queue | [(r1 = r2.m3(),0, )]
(: pc >
(r1 > r2.m3(),0,0)
S7
queue | -
i
— pc 4
queue | -
N
5 pc "

time=4

time =14

time = time + 10

the

S0
queue | [(r1 = r1.m1(),0,%)] |
© [pc -
que
~
Y [pe
l(rl = rl.m1(),0, )
S1
queue | -
= Ipc ml:2
queue | -
Y pe
|
2 ltime = time +2
52
queue | -
= |ipc ml:2
queue | -
~
Y [pc |-
lr(rl)
S3
queue | -
T [pc  [m1:4
queue | [(r1 = r2.m2(),0,)]
< [pe =
l(rl = 12.m2(),0,»)
sS4
_, |aueue -
B pc ml:4
queue | -
o~
T [pc E
2 llmu‘ = time +2
S5
queue | -
= Ipe ml:4
queue | -
~
S |l a0
lr(rl)
S6
que
-
T [pc E
queue | [(r1 = r2.m3(),0,)]
 [pe =
l(l'l = 1r2.m3(),0,»)
S7
que
-
T [pc
que
L
Y [pe
|
1 ltime = time + 10
S8
queue | [(r1 - r1.m1(),10,)]
o . ,20,%0)] |
© [pc =
que
~
T [pc




Properties in an event-based system

* Properties that we care about the most:
— Distance of occurrence of two events
— Event precedence

e Remember, in TTS the transitions are of three
types:
— Passage of time
— Taking a message from the queue to execute: event
— Silent transition T: internal actions in an actor



Real-time Patterns

(Koymans, 1990), (Abid et al., 2011), (Bellini et al., 2009) and (Konrad et al., 2005), (Dwyer et al.,
1999)

 Maximal distance
— Every el is followed by an e2 within x time units
* Exact distance
— Every el is followed by an e2 in exactly x time units

e Minimal distance
— Two consecutive events of e are at least x time units apart

® Properties that we care about the most:
> Distance of occurrence of two events
> Event precedence

LTINS 1 il Il WAl 11 G

* Precedence

— Within the next x time units, the occurrence of el
precedes the occurrence of e2



So, we proposed

 An event-based semantics for Timed Rebeca:
* Floating Time Transition System



Floating Time Transition System:

Event-based Timed-Rebeca Semantics

* Formal semantics given as SOS rules

e The main rule is the schedular rule:

[

(0 (m) v, rtime = maa( T, oy, (now), 75 = 1, sender = 1], Enu, B) = (o7, Env', B
VB o, TE00) B 3 o OB



The scheduler and progress of time

* The scheduler picks up messages from the bag based on their time tags
and execute the corresponding methods.

* delay statements change the value of the current local time, now, for
the considered rebec.

* The time tag for the message is the current local time (now), plus value
of the after

* The scheduler picks the message with the smallest time tag of all the
messages (for all the rebecs) in the message bag.

* The schedular checks if a deadline is missed.

 The variable now is set to the maximum between the current time of
the rebec and the time tag of the selected message.



State space reduction:

a simple Timed-Rebeca Model

reactiveclass RC1 (3) { reactiveclass RC2 (4) {
knownrebecs { knownrebecs {
RC2 r2; RC1 ri;
) }
RC2() { }

Line number as

program counter msgsrv m2() { }

h
msgsrv m1() { msgsrv m1() { |
delay(2); 1 delay(2),
r2.m2(); 2 r2.m2();
delay(2); 3 delay(2);
r2.m3(); 4 r2.m3();
self.m1() after (12 self.m1() after (10);
} }




50 SO
queue | [(r1 - r1.m1(),0,%)]
s 1 [(r1 - r1.m1(),0,0)]
queue | -

e |- 0

0

l(r] = r1l.m1(),0,0)

S1 |
queue | - |
|
|
|

|pc |ml:2
queue | -
pc

l[(rl - r1.m1(),0,)]

— S1
time=2 time = time + 2
— | queue [(r1 - r1.m1(), 14, )] =5
e “lnow |4 o [ Tl1 = Lt (.00
< pc ml:2 2 - = now
queue | [(r1 - r2.m2(),2, )] S
queue | - =
¢ FO u =l re A [(r1 - r2.m3(),4, )] “[now o
(rl) now 0 l[(rl—)?”l.ml(),(),w)]
5 st
one o[ e) [(r] = 1r2.m2(), 2,0)] ~ [aueve [ [(r] > rt.m1(),14,)]
3 p\ieue y[’(xrl‘:ltrz m2(),0,»)] “ | now 4
® e |- — queve | [(rl = r2.m2(),2,00)]
52 [x] [(r1 - 1r2.m3(), 4, )]
queue [(r1 - r1.m1(), 14, )] now |0

rl

l(rl = 12.m2()0,%) |,
® P C S sa . e ( now 4 l[(rl - 12.m2(),2,00)]

B o ~ | Queue [(r1 - r2.m3(), 4, »)] :
Bt e [- now 2 _ | queue [(r1 - r1.m1(), 14, 0)]
o l ' b = 't ~ [ now 4
n e lrmw:lmw” ) a l[(i‘l - 12.m3(),4,)] ] o g(n o]
S5
guete 5 [(r1 - r2.m3(),4, )]
© pc ml:4 53 l
ge n ‘ o [Oete - — | queue [(r1 - r1.m1(), 14, c0)] 3
— L : E— A — | queue ((r1,m1), 14, -)
oW 4 ~ | now 4
1
lm ) ~ | Queue = « | Queue
6 - “ | now 4
TEE now 4
2l |- l[(rl - rl.ml(),14,)]
[(r1 = r2.m3(),0,)]
o P l[(rl - rl.ml1(),14, )] =
— | queue [(r1 - r1.m1(), 28, )]
(r1 = r2.m3(),0,») sS4 “ | now 18
queue [(r1 - r2.m2(), 16,»)]
- | o [Queve | [(r1 > r1.m1(),28 )] o [(r1 > r2.m3(), 18, 0)]
© pc E | now 18 now 4
queue | - | - - :
= [oc | queue [(r1 - r2.m2(), 16, 0)] 5
| : O ; H
time = 14 lu‘me=zime+10 T [ ! l = '2- '713( ): 18:00)]
now 4
S8
queue | [(r1 - r1.m1(),10,0)] | .
< pc 1
queue | - :
2 [pc *




TTS versus FTTS
=D

@0

@0

@2

2.M2 time +=10
@2 @4 -> shift(+14)

0 r2.M3
@4 > shift(+14)
ime +=2
@2

rl.tau=>M1

@4
r2.M3
@4
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Bounded Floating-Time Transition

System

* A notion of state equivalence by shifting the
local times of rebecs
e Time in Timed-Rebeca models is relative

— Uniform shift of time to past or future has no
effect on the execution of statements



Bounding the Floating-Time Transition

System

S20
State vars:
a | Message Bag: | |
Now: 36
State vars: issueDelay=3
ts | Message Bag: [ |
Now: 36
State vars:
¢ | Message Bag: [(a — c. ticketIssued(1),36, )]
Now: 3

Ticket Issued, 3;

516
State vars:
a | Message Bag: | |
Now: 3
State vars: issueDelay=3
ts | Message Bag: [ |
Now: 3
State vars:
¢ | Message Bag: [(c — c.try(),33, )]

Now: 3




Bounded Floating-Time Transition
System: an example

e A shift-time transition,

between states 16 and
20

* Bounded floating-time
transition system and
floating-time
transition system are
bisimilar. STRIOU, TP S T A

[(c = c.try(),33, )0 a - c.ticketIssued(1),36,),33]

[(a - ts.issueTicket(),33,»),0]



Bounded |

e Bounded ti
systemis g
* Contents o

states are t
as FTTS

[(r1 - r2.m2(),16,x)], 14

SO

— | queue [(r1 - r1.m1(),0,00)]
~ | now 0
~ | Queue -
~ | now 0
l[(rl - rLml(),0,0)] g
- rl.m1(),0,)]
S1
— | queue [(r1 - r1.m1(), 14, 0)]
~ | now 4
queue [(r1 - r2.m2(), 2,0)] l[(rl - r1.m1(),0,)]
A [(r1 - r2.m3(), 4, )] m
now 0 > r1.m1(), 14, »)]
l[(rl - 1r2.m2(),2,0)] - r2.m2(),2,0)]
- 1r2.m3(),4, )]
S2
— | queue [(r1 » r1.m1(), 14, 0)] l[(rl - 12.m2(),2,»)]
~ | now 4 &
~ | Queue [(r1 = r2.m3(), 4, )] > rl.mi(), 14,)]
~ | now 2
- 1r2.m3(),4,)]
l[(rl - 1r2.m3(), 4, )]
l[(rl - 1r2.m3(), 4, )]
S3
53
o | Queue [(r1 - r1.m1(), 14, 0)] L), re]
now 4
~ | Queue -
~ | now 4
1-rl.mil(), 14,
l[(rl - rl.m1(), 14,o)] l[(r i i
54
sS4 - r1.m1(),28,»)]
- queue [(r1 - r1.m1(), 28,0)] S 2 m20).16,9)]
now 18 - r2.m3(),18,0)]
queue [(r1 - r2.m2(),16,0)]

r2

[(r1 > r2.m3(),18,0)]

now

4




Deadlock and schedulability check

* We keep the relative distance between values
of all the timing values of each state (relative
timing distances are preserved)

* Deadlines are set relatively so time shift has
no effect on deadline-miss

* For checking “deadline missed” and
“deadlock-freedom” relative time is enough



TTS vs FTTS State Space Size

* About 50% state space reduction

Model Name Number of Rebecs FTTS State Space | TTS State
Size Space Size

Ticket Service
System

4 43 86

5 282 532

6 2035 3526

U 17849 31500
CSMA/CD 4 54 108



Experimental results

* Three models, three tools

Problem Size Using BFTTS Using Timed Automata Using McErlang
F#states time #states time F#states time
1 customer 8 < 1 sec 801 <1 sec 150 <1 sec
2 customers 51 < 1 sec 19M 5 hours 4.5k 3 secs
3 customers 280 < 1 sec - >24 hours' 190K 5.1 mins
Ticket Service 4 customers 1.63%\' < 1 sec - >24 hoursf > 4.\1% -
5 customers 11K < 1 sec - >24 hours! > 4AM? -
6 customers 83K 2 secs - >24 hours! > 4M# -
7 customers 709K 3 mins - >24 hours' > 4M# -
8 customers 6.8M 9.7 hours - >24 hours! > AM3 -
1 sensor 183 < 1 sec - >24 hours' > 6.5M* -
Sensor 2 sensors 24K < 1 sec - >24 hours' > 6M# -
Network 3 sensors 33.6K 1 sec - >24 hours! > 6M# -
4 sensors 588K 13 secs - >24 hours' > 6M? -
1 interface 68 < 1 sec - >24 hours?! 153K 1.8 secs
: 2 interfaces 750 < 1 sec - >24 hours’ > 2.8M# -
?xl;?)t:szloiALOHA 3 interfaces 7.84K 1 sec - >24 h()ursf > 2.8.\1‘% -
4 interfaces 45. 7K 6 secs - >24 hours’ > 2.8M# =
5 interfaces 331K 64 secs - >24 hours’ > 2.8M? -

Table 1: Model checking time and size of state space, using three different tools. The T sign on the reported time shows that
model checking takes more than the time limit (24 hours). The } sign on the reported number of states shows that state
space explosion occurs as the model checker want to allocate more than 16GB in memory which is more than total amount of
memory.



Our reduction technique: distilled

e Event-based analysis - maximum progress of
time based on events (not timer ticks)

— Generating no new states because of delays, each
rebec has its own local time in each state
* Making use of isolated message server
execution of actors

— no shared variables, no blocking send or receive,
single-threaded actors, non-preemptive execution of
each message server

* Check the state equivalence by shifting the local
times of concurrent elements in case of
recurrent behaviors



Comparing to others

* Real-time Maude
— It ticks ... so, explosion
— Bounded model checking

e Timed Automata

— Produce many automata and many clocks for an
asynchronous system — so, explosion



A Point:

FTTS, Considering only the time-tags

reactiveclass Actor1(3) {

}

Actor1() {
self.job1();
}

msgsrv job1() {

self.job2() after(1);

delay(5);

}
msgsrv job2() {

}
msgsrv job3() {

}

self.job3() after(1);

reactiveclass Actor2(3) {

}

knownrebecs {
Actor1 a1;
}
Actor2() {
self.job4() after(2);
}
msgsrv job4() {
a1.job3() after(2);

}

main {

}

Actor1 actor1():();
Actor2 actor2(actor1):();




Simple FTTS: Consider only Smallest Time Tag

reactiveclass Actorl(3) {
Actorl{() {
self.jobl();
¥

msgsrv jobl{) {
self.job2() after(1);

delay(5);
¥
msgsrv job2() {
¥

msgsrv job3() {
self.job3() after(1);
¥

reactiveclass Actor2(3) {
knownrebecs {

Actorl al;
}
Actor2() {

self.job4() after(2);
}

msgsrv job4() {
al.job3() after(2);

}
}
main {
Actorl actorl{):();
Actor2 actor2{actorl):();
}

actorl.JOB3
@6 -> shift(+1)
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actor1 <now>0
<queue> arrival="0" deadline="infinity" sender="actor1">job1
actor2 <now>0
<queue>arrival="2" deadline="infinity" sender="actor2">job4

actorl .JOB1

actor1 <now>5
<queue> arrival="1" deadline="infinity" sender="actor1">job2
actor2 <now>2
<queue> arrival="2" deadline="infinity" sender="actor2">job4

actor1 <now>5

<queue> arrival="1" deadline="infinity" sender="actor1">job2
arrival="4" deadline="infinity" sender="actor2">job3

actor2 <now>5

<queue>

actor1 <now>5
<queue> arrival="4" deadline="infinity" sender="actor2">job3
actor2 <now>5

<queue>
reactiveclass Actorl(3) { reactiveclass Actor2(3) {
actor1 <now>6 Actorl() {self.jobl();} knownrebecs {Actorl al;}
1 _m msgsrv job1() { Actor2() {
actor] JOB3 ~ <queue> arrival="t self.job2() after(1); self.job4() after(2);}
actor2 <now>6 delay(5);} msgsrv job4() {
<queue> msgsrv job2() {} al.job3() after(2);}
msgsrv job3() { )
actor].JOB3 self.job3() after(1);} |/main {
@6 -> shift(+1) 1 Actorl actorl():();

Actor2 actor2(actorl):();

1
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SEADA RoboRebeca HybridRebeca
In SEADA (Self-Adaptive Actors) we will RoboRebeca is a framework which Hybrid Rebeca, is an extension of actor-
use Ptolemy to represent the provides facilities for developing based language Rebeca, to support
architecture, and extensions of Rebeca safe/correct source codes for robotic modeling of cyber-physical systems. In
for modeling and verification. Our applications. In RoboRebeca, models this extension, physical actors are
models@runtime will be coded in an are developed using Rebeca family introduced as new computational
extension of Probabilistic Timed language and automatically entities to encapsulate the physical
Rebeca, and supporting tools for transformed into ROS compatible behaviors. Learn more
customized run-time formal verification source codes. This framework is

Tangramob AdaptiveFlow wRebeca
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Network on Chip

Network Protocols
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Design Decisions:
routing algorithms
Buffer length
Memory Allocation

Zeinab Sharifi, Mahdi Mosaffa, Siamak Mohammadi, and Marjan Sirjani: Functional and
Performance Analysis of Network-on-Chips Using Actor-based Modeling and Formal
Verification, AVoCS, 2013.
https://rebeca-lang.org/assets/papers/2013/Performance-Analysis-of-NoC.pdf

MANET (Mobile Ad Hoc Network)

Destination

Deadlock and loop-freedom of
Mobile Adhoc Networks

Behnaz Yousefi, Fatemeh Ghassemi, and Ramtin Khosravi: Modeling and Efficient
Verification of Wireless Ad hoc Networks, volume 29, Issue 6, pp 1051-1086, Formal
Aspects of Computing, 2017.
https://link.springer.com/article/10.1007/s00165-017-0429-z
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https://rebeca-lang.org/assets/papers/2013/Performance-Analysis-of-NoC.pdf
https://link.springer.com/article/10.1007/s00165-017-0429-z

Smart Transport Hubs

Distributed Real-Time Sensor
Network: Finding the best
configuration

Ehsan Khamespanah, Kirill Mechitov, Marjan Sirjani, Gul Agha: Modeling and Analyzing
Real-Time Wireless Sensor and Actuator Networks Using Actors and Model Checking,
Software Tools for Technology Transfer, 2017.

d- Actuator Networks Using-Actors-and-Model- Checkmg pdf

Number of service disruptions

Number of mobility resources in smart
hubs

Cost of mobility for commuters
Travel time for commuters
Travel distance for commuters

Jacopo de Berardinis, Giorgio Forcina, Ali Jafari, Marjan Sirjani:
Actor-based macroscopic modeling and simulation for smart urban planning. Sci. Comput. Program.
168: 142-164 (2018)



https://rebeca-lang.org/assets/papers/2017/Modeling-and-Analyzing-Real-Time-Wireless-Sensor-and-Actuator-Networks-Using-Actors-and-Model-Checking.pdf
https://rebeca-lang.org/assets/papers/2017/Modeling-and-Analyzing-Real-Time-Wireless-Sensor-and-Actuator-Networks-Using-Actors-and-Model-Checking.pdf
https://www.sciencedirect.com/science/article/pii/S0167642318303459?via%3Dihub

Air Traffic Control Volvo CE Quarry Site

LOADING POINT CHARGE STATION SECONDARY CRUSHER
Y (UNLDADING POINT)

MATERIAL TRANSPORT

WHEEL LOADER PRIMARY CRUSHER

Tracks U to Z Eastbound —

Adaptive Air Traffic Control:
Safe rerouting of airplanes using Safe and optimized fleet control

Magnifier

Maryam Bagheri, Marjan Sirjani, Ehsan Khamespanah, Christel Baier, Ali Movaghar, Marjan Sirjani, Giorgio Forcina, Ali Jafari, Stephan Baumgart, Ensan Khamespanah, Ali
Sedaghatbaf: An Actor-based Design Platform for System of Systems, IEEE 43th Annual

Magnifier: A Compositional Analysis Approach for Autonomous Traffic Control,
Computers, Software, and Applications Conference (COMPSAC), 2019

IEEE Transactions on Software Engineering, 2021
iti i https://rebeca-lang.org/assets/papers/2019/An-Actor-based-Design-Platform-for-System-of-Sy

h- for-Autonomous Trafflc Control.pdf stems.pdf
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https://rebeca-lang.org/assets/papers/2021/Magnifier-A-Compositional-Analysis-Approach-for-Autonomous-Traffic-Control.pdf
https://rebeca-lang.org/assets/papers/2021/Magnifier-A-Compositional-Analysis-Approach-for-Autonomous-Traffic-Control.pdf
https://rebeca-lang.org/assets/papers/2019/An-Actor-based-Design-Platform-for-System-of-Systems.pdf
https://rebeca-lang.org/assets/papers/2019/An-Actor-based-Design-Platform-for-System-of-Systems.pdf

Connected Medical Systems

Model-Based Cyber-Security

--------
. .

.........

1
; )
B a
P A
_ et

Information system ‘ : "
\ A sensor 2~ ~
Local properties of devices are assured by
the vendors at the development time.

\\{\‘" - : :
> . patent @@

e —

Verify the satisfaction of timing
communication requirements.

Helpful for dynamic network configuration
or capacity planning.

Mahsa Zarneshan, Fatemeh Ghassemi, Ehsan Khamespanah, Marjan Sirjani, John Hatcliff:
Specification and Verification of Timing Properties in Interoperable Medical Systems. Log. Methods
Comput. Sci. 18(2) (2022)

https://Imcs.episciences.org/9639

___Controller |

D etect/Mitigate

Analyzer/Planner

Tiny Digital Twin

g
= f . o \
o Intrusion Detection System
=

MAPE-K architecture
(Monitor- Analysis — Plan — Execute)- Knowledge

* Runtime monitor to check the
system behavior using a Tiny
Digital Twin

Fereidoun Moradi, Maryam Bagheri, Hanieh Rahmati, Hamed Yazdi, Sara Abbaspour
Asadollah, Marjan Sirjani, Monitoring Cyber-Physical Systems using a Tiny Twin to
Prevent Cyber-Attacks, 28th International Symposium on Model Checking of
Software (SPIN), 2022
https://rebeca-lang.org/assets/papers/2022/Monitoring-Cyber-Physical-Systems-Using-a-Tin

y-Twin-to-Prevent-Cyber-Attacks.pdf



https://lmcs.episciences.org/9639
https://rebeca-lang.org/assets/papers/2022/Monitoring-Cyber-Physical-Systems-Using-a-Tiny-Twin-to-Prevent-Cyber-Attacks.pdf
https://rebeca-lang.org/assets/papers/2022/Monitoring-Cyber-Physical-Systems-Using-a-Tiny-Twin-to-Prevent-Cyber-Attacks.pdf

AdaptiveFlow

, Moving Objects )

Robots
Haulers
Airplanes
Trains (9 Environments )
AT Warehouse aisles
Packets
Quarry roads
% Air tunnels
 Points of Interest )Ra;{l :’ :sds
Loading stations Networks
Fuel stations
Airports
Metro stops
Parking stations
Routers

Wait & Retry

Over pass segment

Model
Generator

Re-route

VCE Simulator

Adaptive Policies and Dynamic Changes .

Formal Verification

Rebeca Model

Safety Assurance

Deadline misses @
Deadlock ]

A oNo)

tarvation

Fuel outage @ @ @

Collisions @@G:DG) CD Evaluator

Wrong movements

Performance Evaluation

Consumed Fuel
Emitted CO2
Transported Material
Operation time
Travel Distances
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Cyber-Security Assurance

Using Model Checking and Monitoring

Find the attacks like finding the anomalies

Attacks on components
1

Sensor data ’ " —|_ I Commands
a —“‘& ontrollers —&-

=

#% Attacks on communications

ooo _I I ' _l I
Sensors _|— Actuators—|— o
6@ . | | |
N e +  Usea
“----aPhysical Process ra---~ Tiny Digital Twin

as a reference model

Cyber-Physical Systems (CPSs)



Monitoring at Runtime

Temperature Control System (TPS)

Sensor Data:
Temperature value

Commands:
Sensor Activate Heating/Cooling
dats (.§g Switch off

Sensor ATTACKS:

Dropping packets

False sensor data injection
Faulty control commands

Controller
DAMAGEs:
Degrades the temperature
The wireless communication network is regulation process,
vulnerable to malicious cyber-attacks!! Pushes temperature value out of
the defined range




Verification-Driven Iterative

Development of Cyber-Physical System

Behavioral More models:
Madsling We need more models at each phase

[ State O ]
Diagram
10 ;
: Sequence % Form a.l
Requirement iagran - Ve Hiloation
Specification bl A

- e Models
Functional Safety Rebeta Code ( 3
Requirements

g
%
3 2
l 1 a. % Properties
S % Logical Formulas
Structured Requirements :?., ‘g { o ST J
{Given-When-Then) % R
Marjan Sirjani, Luciana Provenzano, Sara Pl INGUA
Abbaspour Asadollah, Mahshid Helali .F FRANCA
Moghadam, Mehrdad Saadatmand:

Towards a Verification-Driven Iterative
Development of Software for
Safety-Critical Cyber-Physical Systems,
Journal of Internet Services and
Applications, 2021
https://rebeca-lang.org/assets/papers/202 Im p| ementation
0/Towards-a-Verification-Driven-Iterative-

Development-of-Cyber-Physical-System.pdf

Verification-Driven Iterative Development of Cyber-Physical System



https://rebeca-lang.org/assets/papers/2020/Towards-a-Verification-Driven-Iterative-Development-of-Cyber-Physical-System.pdf
https://rebeca-lang.org/assets/papers/2020/Towards-a-Verification-Driven-Iterative-Development-of-Cyber-Physical-System.pdf
https://rebeca-lang.org/assets/papers/2020/Towards-a-Verification-Driven-Iterative-Development-of-Cyber-Physical-System.pdf

Verification of Cyber-Physical Systems

Lingua Franca is a programming language based on the Reactor
model of computation for building cyber-physical systems.

Reactors and Rebeca: Natural mapping of semantics

(similar syntax)

&;gUNGUA

A polyglot meta-language for
deterministic, concurrent,
time-sensitive systems.

Marten Lohstroh , Martin Schoeberl, Andrés Goens, Armin
Wasicek, Christopher D. Gill, Marjan Sirjani, Edward A. Lee:
Actors Revisited for Time-Critical Systems. DAC 2019: 152

TrainSystem

door : Door host2

controller : Controller host1 B
\ A\ _>>. ‘:'
O‘""} 15 lack lock L 4
‘ peesesesesesnnaes ’_
\ \.‘.JI
A""}’ L —— » train : Train host3
z o maove Y Y
—) )
move S

Verification of cyberphysical systems
M Sirjani, EA Lee, E Khamespanah
Mathematics 8 (7), 1068, 2020
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target C;
reactor Controller {

output lock:bool; output unlock:bool;
output move:bool; output stop:bool;
physical action external:bool;
reaction(startup) {=

Set up external sensing.

reaction{external)

I

}

->lock, unlock, move, stop {=

if (external_value) {

¥
+

set{lock, true); set{move, true);
else {
set{unlock, true); set{stop, true);

reactor Train {

input move:bool; input stop:bool;
state moving:bool{false);
reaction{move) {=
self->moving = true;
=}
reaction(stop) {=
self->moving = false;
=
3
reactor Door {

input lock:boecl; input unlock:bool;
state locked:bool{false);
reaction{lock) {=

}

.. Actuate to lock door.

self->locked = true;

reaction{unlock) {=

}

i

Actuate to unlock door.

self->locked = false;

main reactor System {

c

O 600 c

new Controller(); d = new Door{();

new Train();

.lock -> d.lock;

.unlock -> d.unlock after 100 msec;
.move -> t.move after 100 msec;
.8top -> t.stop;

L‘E»uNGUA

o R NI QR

<

e
N =

43

reactiveclass
knownrebec
D

Controller(s) {
s{

oor door; Train train;

}
statevars { boolean moveP;}
Controller() {
moveP = true;
self.external_move();
}
msgsrv external _move() {
int 4 =
int x =| Lingua Franca Construct/Features | Timed Rebeca Construct/Features
e reactor reactiveclass
if (mov K
é reaction MSYSTY
A .
e trigger mMsgsrv name
e state statevars
e input Msgsro
! output known rebecs
moveF A }7 )
self. physical action Msgsrv
} O3 . Lol .
el implicit in the topology Przo;'frty
statevars main main
‘;’°°1e"“’- instantiation (new) instantiation of rebecs
Train) { connection implicit in calling message servers
r;oving after after
dpriority — delay
moving = false;
¥
Qpriority(2) msgsrv move{) {
moving = true,
Yok
reactiveclass Door(10) {
statevars{ System
boolean is_locked; Door
} \ockk i
Door{() { Controller T
is_locked = false; i ——
3 fock 100msec /—)———E
& . unlock
@priority(1) msgsrv lock () { e
is_locked = true; unlock
- ; =
It Q D = Train
dpriority(2) msgsrv unlock () { At move - move
is_locked = false; ﬁ""E »— meee "D
} stop
¥ > % 2 )
main { stop
@priority(1l) Controller controller{door,
train): () ;
@priority{(2) Train train():();
@priority(2) Door door():();
)




Experience Distilled as Transparent Actors

e Looking into different application domains

o Scheduling and end-to-end delays of Sensor Networks and Cyber-Physical Systems

m Volvo cars, Volvo Trucks, Deif — Smart Structures (Gul Agha), Interoperable Medical Systems
(John Hatcliff)

o Optimisation of Flow Management
m Volvo CE, Isavia, NoC (Siamak Mohammadi, Smart Hubs (Andrea Polini)

o Model Checking Network Protocols, CPS

m AODV, LF, all the above

e Different Actor-based Languages
o Rebeca, Timed Rebeca, Hewitt-Agha actor-based languages
o Creol, ABS, Concurrent object languages

o Lingua Franca and Edward Lee’s actors



Tra nsS pa re nt Acto rs (Fatemeh Ghassemi, Ehsan Khamespanah, Hossein Hojjat, 2023)

Experience Distilled

Variability Points

Abstract Network

s19|pueH
si9|pueH

Actor Buffer Network Buffer Actor Buffer

receive l _
—» insert

Overwrite, drop...

transfer I
—»
receive

- * remove ]:
Network Delay, _m—.ﬁ“b
Priority ... -_4. ________
' —> insert

[ -

Composition Level ta ke I

A remove
Which actor to schedule: FIFO, EDF, —m?——-—_>I
NonDet, Priority pattern-match ... < - 1 e

Fatemeh Ghassemi, [Marjan Sirjani, Ensan Khamespanah, Mahrokh Mirani, Hossein Hojjat: Transparent Actor Model. FormaliSE 2023: 97-107 ]- 'I'




References

* For publications, see
http://rebeca-lang.org/publications

* For projects, see
http://rebeca-lang.org/projects



http://rebeca-lang.org/publications
http://rebeca-lang.org/projects

* QUESTIONS?



The Big Theorem

Theorem 1. The refation R is an action-based weak bisimulation relation between
statesof TTS and FTTS.

@
YN s9 - A
-8 ! t completing traces are CE N
considered A
w S, .9,
- 81"t stttering of s G (e

Part of astate space Part of astate space

in TTS in FTTS
Corollary 1. Transition systemsof Timed R ebeca modeisin TTS and FTTS are equiv-

alent with respect to all formulas that can be expressed in modal -calculus with weak

modalities where the actions are taking messages from bags. t

22

Corollary 1. Transition systems of Timed Rebeca models in TTS and FTTS are
equivalent with respect to all formulas that can be expressed in modal pcalculus
with weak modalities where the actions are taking messages from bags.



Timed Rebeca Model of Ping-Pong

reactiveclass Ping(3) { reactiveclass Pong(3) {
knownrebecs {Pong pong;} knownrebecs {Ping ping;}
Ping() { Pong() {
self.ping(); }
} msgsrv pong() {
msgsrv ping() { ping.ping() after (1) deadline(2);
pong.pong() after(1); delay(1);
delay(2); }
} }
}
main {

Ping ping(pong):();
Pong pong(ping):();



Timed Transition System of Ping-Pong

Without after and deadline With after and deadline

. _ Start executing a ‘
Ping.ping method Ping.ping
Pong.pong

time +=1
ime+=1 delay (5
Pong.pong
T:Pong.pong continue executing
a method

ime+=1 time +=1
T:Ping.ping T:Ping.ping :Pong.pong
Ping.ping Ping.ping

T:Ping.ping

T:Pong.pong Ping.ping



Timed Automata of Timed Rebeca

Models

* Three types of automata

— A timed automaton for modeling the behavior of
each rebec

— A timed automaton for each message bag

— A timed automaton for simulating the behavior of
after



Timed Automata for Ping and Pong

(Model without after and deadline)

reactiveclass Ping(3) { sender=ping
knownrebecs {Pong pong;} receiver=pong

[ i ive? == pi send!
Ping() {self.ping();} ’w)@message p|ng)@
msgsrv ping() {

pong.pong();

}P0)d @

delay(2); ©
remove-executed-message
} @< s5 1,”’\'
} clockl==2 g
&
reactiveclass Pong(3) { sender=pong
knownrebecs {Ping ping;} receiver=ping
Ping() {} receive?, C3message == pong)@se“d!
msgsrv ping() { o
. . (o]
ping.ping(); 2
delay(1); &
} remove—executed—message
2
} @( clock2==1 > At
o

“%



Timed Automata for Message Buffers

Receiving
messages

send?
isertinBuffer()

messageBagio] 1= NULC

Synchronized receive!
with receive? in

the rebec 5 . ¢

i:int[1,N]
messageBag|[i] = NULL && discard(i)
deadline[i] < clock]i] Discard messages

which missed
their deadlines




Timed Automata for After

~

Receive messages
and put themin a
buffer

Send the messages
when time enough is

passed according to messageBagli] != NULL &&

the after parameter timel[i] == clock{i] after?

K insertinBuffer()
takeFromBuffer() m

send!




Region Transition System of Timed

Automata Model

* Labels of states
— S: Ping actor,
— p: Pong actor,
— q: Ping queue,
— t: Pong queue
— c1: local clock of Ping actor,
— c2: local clock of Pong actor



receive? message receive? message
= s3 @ P2) == pong = (P3
g5 @ L
21 & a o | receive!l send? e % £ & . receive! send?
£ 2 395 £ 3 2 L2
ol © $ T 2|n Q g<J (] % > g
g[5 & X a1 23 ¢ 23 g«—
2 9 | S0
6 s5 é 6! (p5 4
69( c1==2 O(c1=0 s4 , , PO oy P g P , ,
c1<=2 discard(i) 2<=1 disdard(i)

receive

=0; =
- S a—1
=0;7t2=0

message




Region Transition System of Timed Automata

Model (Model without after and deadline)

RTS of the Timed eceive TTS of the Timed
Automata model Pressagonng  sREDECA Model
® Ping.ping
end
‘ c1=0 Pong.pong
receive FTTS of the Timed
__ (4 () ime +=1 Rebeca model
message==pong feceive
send ssage==pong T:Pong.pong
c2=0 S sd ime +=1 Ping.ping
@ (J
c2=0 T:Ping.ping Pong.pong
c1=0 ‘
0<cl1<1, 0<c2<1 i i
Ping.ping 'NE-PINg



Timed Automata for Ping-Pong

(Model with after and deadline)

sender=Ping
reactiveclass Ping(3) { receiver=Pong
knownrebecs {Pong pong;} receive?_ (> \message == ping deadline=Infinit
d ODCKL1=U
Ping() {self.ping();} afterTimel=1
msgsrv ping() { after!
pong.pong() after(1);
delay(2);
remove-executed-message
clockl==2 4
) &
éo
reactiveclass Pong(3) { receive? 3)message == pon 3 sender=Pong
knownrebecs {Ping ping;} ’—)@ g)@receiver=Ping
. . (o)
Ping() {} deadline=2 o
msgsrv ping() { afterClock2=0 ?

afterTime2=1 o
after!

delay(1); remove-executed-message g S
@( clock2==1 2

ping.ping() after (1) deadline(2);




